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Preface

Pharmacologists and other experimental life scientists study samples to infer
conclusions about how a molecule, cell, organ, and/or organism work in health
and disease and how this can be altered by drugs. The concept of inference implies
that whatever is reported based on the sample under investigation is representative
for the molecule, cell, organ, or organism under investigation in general. However,
this generalizability requires that two fundamental conditions are met: First, what is
being reported must be a true representation of what has been found. This sounds
trivial, but if data are selected, e.g., by unexplained removal of outliers or reporting is
biased by focusing on the findings in support of a hypothesis, reported data become a
biased rather than a true representation of what has been found. Second, what has
been found must be robust, i.e., other investigators doing a very similar experiment
should come up with similar findings. This requires a complete reporting of what
exactly has been done. It also requires that biases at the level of sampling, measuring,
and analyzing are reduced as much as feasible. These are scientific principles that
have been known for a long time. Nonetheless, scientific practice apparently often
ignores them—in part based on felt pressure to generate as many articles in high-
profile journals as possible. While the behavior of each participant (investigators,
institutions, editors, publishers, and funders) follows an understandable logic, the
result is counterproductive for the greater aims of scientific investigation. Against
this background, this volume in the series Handbook of Experimental Pharmacology
discusses various aspects related to the generation and reporting of robust data. It is
published 100 years after the first volume of the series, and this anniversary is a
fitting occasion to reflect on current practice and to discuss how the robustness of
experimental pharmacology can be enhanced.

It has become clear in the past decade, that many if not most preclinical study
findings are not reproducible. Governmental and nongovernmental funding bodies
have realized that and demand that the scientific community improves its standards
of scientific rigor. Particularly, the use of experimental animals in biomedical
research creates the ethical imperative that they are utilized in robustly designed
studies only.

The challenge to generate robust results of high quality is not a unique to
experimental biology, nor is it fundamentally different in academia and pharmaceu-
tical industry. In some areas subject to regulatory oversight, such as manufacturing
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or in clinical trials, clear rules and regulations have been established that are
internationally agreed upon, such as those of Good Manufacturing Practice, Good
Laboratory Practice, or Good Clinical Practice. The exploratory nature, complexity,
and often unexpectedness of experimental pharmacology may in many ways be unfit
for such formal rules. Nonetheless, we as a community need to improve our
standards also in the nonregulated areas of biomedical research. Indeed, various
groups of individuals and organizations have developed guidelines for doing robust
science and its reporting, which are summarized and discussed by Kabitzke et al. in
the chapter “Guidelines & Initiatives for Good Research Practice”. Many of the
conclusions reached in this book will not sound new to those who are engaged in
clinical research because most of them have been established long ago in the context
of evidence-based medicine as discussed by Lefevre and Balice-Gordon in the
chapter “Learning from Principles of Evidence-Based Medicine to Optimize Non-
clinical Research Practices”. Thus, limited robustness of many published studies is
mainly not a problem of not knowing better but of implementation of established
best practice. Bongiovanni et al. discuss means of quality assurance in a non-
regulated environment in the chapter “Quality in Non-GxP Research Environment”.

The second part of this volume consists of chapters discussing quality aspects in
the design, execution, analysis, and performance of studies in experimental pharma-
cology. Four chapters discuss aspects of study design, including general principles
(Huang et al., in the chapter “General Principles of Preclinical Study Design”), the
role and characteristics of exploratory vs. confirmatory studies (Dirnagl, in the
chapter “Resolving the Tension Between Exploration and Confirmation in Preclini-
cal Biomedical Research”), the role and challenges of randomization and blinding
(Bespalov et al., in the chapter “Blinding and Randomization”), and the need for
appropriate positive and negative controls (Moser, in the chapter “Out of Control?
Managing Baseline Variability in Experimental Studies with Control Groups”).
Most of the arguments being made in these chapters will sound familiar to those
engaged in clinical trials. More specific for experimental research are the next three
chapters dealing with the quality of research tools (Doller and Wes, in the chapter
“Quality of Research Tools”), genetic background and sex of experimental animals
(Sukoff Rizzo et al., in the chapter “Genetic Background and Sex: Impact on
Generalizability of Research Findings in Pharmacology Studies”), and aspects of
quality in translational studies (Erdogan and Michel, in the chapter “Building
Robustness Intro Translational Research”).

Even if study design and execution have followed quality principles, findings
may not be robust if their analysis and reporting fall short of those principles. If
methods being used and results being obtained are not described with enough
granularity, they become irreproducible on technical grounds: you can only confirm
something if you know what has been done and found. Emmerich and Harris (in the
chapter “Minimum Information and Quality Standards for Conducting, Reporting,
and Organizing In Vitro Research”) and Voehringer and Nicholson (in the chapter
“Minimum Information in In Vivo Research”) propose minimum information to be
provided in the reporting of findings from in vitro and in vivo research, respectively.
Also, lack of understanding of the principles of statistical analysis and
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misinterpretation of P-values are widely seen as a major contributing factor to poor
robustness. Lew (in the chapter “A Reckless Guide to P-Values: Local Evidence,
Global Errors”) summarizes key principles of statistical analysis—in a surprisingly
readable and entertaining manner given the inherent dryness of the subject.

As most research is carried out by teams, it becomes essential that each member
documents what has been done and found in a manner accessible to other team
members. Gerlach et al. (in the chapter “Electronic Lab Notebooks and Experimental
Design Assistants”) discuss the advantages and challenges of using electronic lab
notebooks and electronic study design assistants as well as the ALCOA (Attribut-
able, Legible, Contemporaneous, Original, and Accurate) and FAIR (Findable,
Accessible, Interoperable, Reusable) principles and Hahnel (in the chapter “Data
Storage”) issues of data storage. Even when data have been generated, analyzed, and
reported to the highest standards, some degree of disagreement is expected in the
scientific literature. Systematic reviews and meta-analysis have long been powerful
tools of clinical medicine to aggregate the available evidence. Macleod et al. (in the
chapter “Design of Meta-Analysis Studies”) discuss how this experience can be
leveraged for experimental research. When all of this is said and done, findings
should be published to become available to the scientific community. Based on his
perspective as editor of a high-profile journal, Hrynaszkiewicz (in the chapter
“Publishers’ Responsibilities in Promoting Data Quality and Reproducibility”)
discusses how publishers can contribute to the unbiased reporting of robust research.

The question arises whether increased overall robustness of published data in the
experimental life sciences can be achieved based on individual investigators doing
the right thing or whether structural elements are required to support this. This book
highlights three specific aspects why efforts to introduce and maintain high research
quality standards cannot be reduced to isolated guidelines, recommendations, and
policies. First, such efforts will not be successful without viewing them in the broad
context of research environment and infrastructure and without providing a possibil-
ity for the changes to trigger feedback. Gilis (in the chapter “Quality Governance in
Biomedical Research”) discusses the importance of fit-for-purpose quality gover-
nance. Second, many areas of modern research environment are already a subject to
existing legal and institutional rules and policies. Good research practice does not
come into conflict but can effectively learn from how other changes were introduced
and are maintained. Guillen and Steckler (in the chapter “Good Research Practice:
Lessons from Animal Care & Use”) focus on the care and use of experimental
animals that cannot be separated from issues related to study design, execution, and
analysis. Third, most biomedical research today is conducted by teams of scientists,
often across different countries. Vaudano (in the chapter “Research Collaborations
and Quality in Research: Foes or Friends?”) stresses the importance of the role of
transparency and data sharing in scientific collaborations. However, all of this would
be incomplete by ignoring the elephant in the room: what will it cost in terms of
financial, time, and other resources to implement quality in research? Grondin and
coworkers (in the chapter “Costs of Implementing Quality in Research Practice”)
explore how quality can be achieved with limited impact on often already limited
resources.
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This volume has largely drawn on authors who participate as investigators in the
European Quality In Preclinical Data (EQIPD; https://quality-preclinical-data.eu)
consortium. EQIPD is part of the Innovative Medicine Initiatives (https://imi.
europa.eu), a public–private partnership between the European Commission and
the European Federation of Pharmaceutical Industries and Associations. EQIPD was
launched in October 2017 to develop simple, sustainable solutions that facilitate
improvements in data quality without adversely impacting innovation or freedom of
research. EQIPD brings together researchers from 29 institutions in academia, small
businesses, and major pharmaceutical companies from eight countries. Moreover, it
involves stakeholders from various nonprofit organizations not only in Europe but
also in Israel and the USA and a range of international advisors and collaborators
including the U.S. National Institutes of Health. Some of the contributors to this
volume come from this expanded group of EQIPD participants.

The efforts of authors and editors of this volume would have limited impact if
they were not accessible to the wider community of experimental pharmacologists
and biologists in general. Therefore, we are happy that not only each chapter will be
listed individually on PubMed for easy retrieval but also available as open access.
Therefore, we would like to thank the sponsors making open access publication of
this volume possible: AbbVie Inc., Boehringer Ingelheim Pharma GmbH & Co. KG,
Janssen Pharmaceutica NV, Pfizer Inc., Sanofi-Aventis Recherche et Dévelopement,
and UCB Biopharma SPRL, all of whom are members of EQIPD. Finally, we would
like to thank our families and specifically spouses, Inna, Martina, and Regine, who
tolerated the time we spent on preparing this volume.

Heidelberg, Germany Anton Bespalov
Mainz, Germany Martin C. Michel
Beerse, Belgium Thomas Steckler

viii Preface

https://quality-preclinical-data.eu
https://imi.europa.eu
https://imi.europa.eu


Contents

Quality in Non-GxP Research Environment . . . . . . . . . . . . . . . . . . . . . . 1
Sandrine Bongiovanni, Robert Purdue, Oleg Kornienko, and René Bernard

Guidelines and Initiatives for Good Research Practice . . . . . . . . . . . . . . 19
Patricia Kabitzke, Kristin M. Cheng, and Bruce Altevogt

Learning from Principles of Evidence-Based Medicine
to Optimize Nonclinical Research Practices . . . . . . . . . . . . . . . . . . . . . . 35
Isabel A. Lefevre and Rita J. Balice-Gordon

General Principles of Preclinical Study Design . . . . . . . . . . . . . . . . . . . . 55
Wenlong Huang, Nathalie Percie du Sert, Jan Vollert,
and Andrew S. C. Rice

Resolving the Tension Between Exploration and Confirmation
in Preclinical Biomedical Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Ulrich Dirnagl

Blinding and Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Anton Bespalov, Karsten Wicke, and Vincent Castagné

Out of Control? Managing Baseline Variability
in Experimental Studies with Control Groups . . . . . . . . . . . . . . . . . . . . 101
Paul Moser

Quality of Research Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Dario Doller and Paul Wes

Genetic Background and Sex: Impact on Generalizability
of Research Findings in Pharmacology Studies . . . . . . . . . . . . . . . . . . . . 147
Stacey J. Sukoff Rizzo, Stephanie McTighe, and David L. McKinzie

Building Robustness into Translational Research . . . . . . . . . . . . . . . . . . 163
Betül R. Erdogan and Martin C. Michel

Minimum Information and Quality Standards for Conducting,
Reporting, and Organizing In Vitro Research . . . . . . . . . . . . . . . . . . . . 177
Christoph H. Emmerich and Christopher M. Harris

ix



Minimum Information in In Vivo Research . . . . . . . . . . . . . . . . . . . . . . 197
Patrizia Voehringer and Janet R. Nicholson

A Reckless Guide to P-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Michael J. Lew

Electronic Lab Notebooks and Experimental Design Assistants . . . . . . . 257
Björn Gerlach, Christopher Untucht, and Alfred Stefan

Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Christopher Frederick Isambard Blumzon and Adrian-Tudor Pănescu

Design of Meta-Analysis Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Malcolm R. Macleod, Ezgi Tanriver-Ayder, Kaitlyn Hair, and Emily Sena

Publishers’ Responsibilities in Promoting Data Quality
and Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Iain Hrynaszkiewicz

Quality Governance in Biomedical Research . . . . . . . . . . . . . . . . . . . . . 349
Anja Gilis

Good Research Practice: Lessons from Animal Care and Use . . . . . . . . 367
Javier Guillén and Thomas Steckler

Research Collaborations and Quality in Research: Foes or Friends? . . . 383
Elisabetta Vaudano

Costs of Implementing Quality in Research Practice . . . . . . . . . . . . . . . 399
O. Meagan Littrell, Claudia Stoeger, Holger Maier, Helmut Fuchs,
Martin Hrabě de Angelis, Lisa A. Cassis, Greg A. Gerhardt,
Richard Grondin, and Valérie Gailus-Durner

x Contents



Quality in Non-GxP Research Environment

Sandrine Bongiovanni, Robert Purdue, Oleg Kornienko,
and René Bernard

Contents
1 Why Do We Need a Quality Standard in Research? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Critical Points to Consider Before Implementing a Quality Standard in Research . . . . . . . . . 4

2.1 GxP or Non-GxP Standard Implementation in Research? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Resource Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Non-GxP Research Standard Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Data Integrity Principles: ALCOA+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Research Quality System Core Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Risk- and Principle-Based Quality System Assessment Approach . . . . . . . . . . . . . . . . . . . . 9

4 How Can the Community Move Forward? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Promoting Quality Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Creating a Recognized Quality Standard in Research: IMI Initiative – EQIPD . . . . . . 13
4.3 Funders Plan to Enhance Reproducibility and Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

S. Bongiovanni (*)
Quality Assurance, Novartis Institutes for BioMedical Research (NIBR), Novartis Pharma AG,
Basel, Switzerland
e-mail: sandrine.bongiovanni@novartis.com

R. Purdue
Information and Compliance Management, Novartis Institutes for BioMedical Research Inc.,
Cambridge, MA, USA
e-mail: robert.purdue@novartis.com

O. Kornienko
External Services Quality Assurance, Novartis Institutes for Biomedical Research, Cambridge, MA,
USA
e-mail: oleg.kornienko@novartis.com

R. Bernard
Department of Experimental Neurology, Clinic of Neurology, Charité Universitätsmedizin, Berlin,
Germany
e-mail: rene.bernard@charite.de

# The Author(s) 2019
A. Bespalov et al. (eds.), Good Research Practice in Non-Clinical Pharmacology
and Biomedicine, Handbook of Experimental Pharmacology 257,
https://doi.org/10.1007/164_2019_274

1

http://crossmark.crossref.org/dialog/?doi=10.1007/164_2019_274&domain=pdf
mailto:sandrine.bongiovanni@novartis.com
mailto:robert.purdue@novartis.com
mailto:oleg.kornienko@novartis.com
mailto:rene.bernard@charite.de


Abstract
There has been increasing evidence in recent years that research in life sciences is
lacking in reproducibility and data quality. This raises the need for effective
systems to improve data integrity in the evolving non-GxP research environment.
This chapter describes the critical elements that need to be considered to ensure a
successful implementation of research quality standards in both industry and
academia. The quality standard proposed is founded on data integrity principles
and good research practices and contains basic quality system elements, which
are common to most laboratories. Here, we propose a pragmatic and risk-based
quality system and associated assessment process to ensure reproducibility and
data quality of experimental results while making best use of the resources.

Keywords
ALCOA+ principles · Data integrity · Data quality · EQIPD · European Quality
in Preclinical Data · European Union’s Innovative Medicines Initiative ·
Experimental results · Good research practice · IMI · Non-GxP research
environment · Quality culture · Reproducibility · Research quality standard ·
Research quality system · Risk-based quality system assessment · Transparency

1 Why Do We Need a Quality Standard in Research?

Over the past decades, numerous novel technologies and scientific innovation
initiated a shift in drug discovery and development models. Progress in genomics
and genetics technologies opened the door for personalized medicine. Gene and
targeted therapies could give the chance of a normal life for genetically diseased
patients. For example, adeno-associated viruses, such as AAV9, are currently used to
create new treatments for newborns diagnosed with spinal muscular atrophy (SMA)
(Mendell et al. 2017; Al-Zaidy et al. 2019). Similarly, the use of clustered regularly
interspaced short palindromic repeats (CRISPR) (Liu et al. 2019) or proteolysis
targeting chimeras (PROTACs) (Caruso 2018) is leading to novel cancer therapy
developments. The broader use of digitalization, machine learning and artificial
intelligence (AI) (Hassanzadeh et al. 2019) in combination with these technologies
will revolutionize the drug discovery and clinical study design and accelerate drug
development (Pangalos et al. 2019).

Regulators all over the world are closely monitoring these breakthrough scientific
advances and drug development revolution. While they evaluate the great promise of
innovative medicines, they also raise questions about potential safety risks, ethics
and environment. Consequently, new ethical laws and regulations are emerging to
mitigate the risks without slowing down innovation. For example, the UK Human
Tissue Act became effective in 2006, followed by the Swiss Human Research Act
in January 2014 (Swiss-Federal-Government, Effective 1 January 2014); the EU
General Data Protection Regulation (No.679/2016, the GDPR) came into effect on
May 25, 2018 (EMA 2018a); and the guideline on good pharmacogenomics practice
has been in effect since September 2018 (EMA 2018b).

2 S. Bongiovanni et al.



This is exemplified by the EMA Network Strategy to 2020 (EMA 2015), which
aims both to promote innovation and to better understand associated risks, in order to
provide patients with safe and novel drugs or treatments on the market more rapidly.

This evolving research and regulatory environment, along with many other new
challenges, such as aggressive patent litigation cases, increasing burden for approval
and reimbursement of new molecular entities (NMEs), challenging market dynamics
and high societal pressure enforce radical changes in the research and drug develop-
ment models of the pharmaceutical industry (Gautam and Pan 2016). In response,
most of the pharmaceutical companies have refocused on portfolio management,
acquired promising biotechnology companies and developed research collaborations
with academia (Palmer and Chaguturu 2017). The goal is to speed up drug develop-
ment in order to deliver new drugs and new treatments to their patients and
customers. Thus, transition from research to drug development should be more
efficient. To do so, robust data quality, integrity and reproducibility became essen-
tial, and the development of a quality culture across the entire value chain emerged to
be critical. Indeed, while many drug development areas already applied the various
good practice (GxP) standards and guidances, no recognized quality standard
governed discovery and early development. Conversely, discovery activities had
to comply with many regulations, such as biosafety, controlled substances and data
privacy; thus, there was a real risk of exposure in non-GXP research.

In order to mitigate these newly emerging risks and speed up drug development,
some pharmaceutical companies decided to develop their own internal research
quality standard (RQS), based on good scientific practices and data integrity, to
promote robust science and data quality. The foundations of RQS were the WHO:
“Quality Practices in Basic Biomedical Research” (WHO 2005), first published
in 2001, and the “Quality in Research Guideline for working in non-regulated
research”, published by the British Research Quality Association RQA, in 2006
and revised in 2008 and 2014 (RQA-Working-Party-on-Quality-in-Non-Regulated-
Research 2014).

Academic research institutions and laboratories are as committed as their phar-
maceutical counterparts to good scientific practices but are largely operating
without defined standards. Many universities hold their scientists accountable for
good scientific practices, which are mainly focused on preventing misconduct and
promoting a collaborative environment. Academic output is measured by the amount
of publications, often in prestigious journals. Peer review of manuscripts is seen
by academics as the main quality control element. During the last decade, the
replication and reproducibility crisis in biomedical sciences has exposed severe
quality problems in the planning and conduct of research studies in both academia
and pharmaceutical industry. Academic crisis response elements include public
transparency measures such as preregistration, open-access publication and open
data (Kupferschmidt 2018; Levin et al. 2016).

As a result of the replication crisis, which hinges on poor quality of experimental
design and resulting data, quality management now has a historic chance to be
introduced in the academic biomedical world. Such a system incorporates openness
and transparency as key elements for quality assurance (Dirnagl et al. 2018).

Quality in Non-GxP Research Environment 3



2 Critical Points to Consider Before Implementing a Quality
Standard in Research

2.1 GxP or Non-GxP Standard Implementation in Research?

Many activities performed in discovery phase and early development are not
conducted under GxP standard but need to comply with a number of regulations.
Thus, the implementation of an early phase quality standard could help to mitigate
the gap and reduce risk exposure. A simple solution could be to apply good
laboratory practice (GLP) standards to all research activities in order to mitigate
the gap of quality standard.

The classical GxP standards were often born reactively, out of disaster and
severe malpractices, which compromised human health. The GLP, for example,
originate from the early 1970s, when the Food and Drug Administration (FDA)
highlighted several compliance findings in preclinical studies in the USA, such
as mis-identification of control and treated animals, suppressed scientific findings,
data inventions, dead animal replacements and mis-dosing of test animals. These
cases emphasized the need for better control of safety data to minimize risk, in study
planning and conduct, in order to both improve the data reliability and protect
study participant life. As a result, the FDA created the GLP regulations, which
became effective on June 20, 1979. The FDA also launched their Bioresearch
Monitoring Program (BIMO), which aimed to conduct routine inspection and data
reviews of nonclinical laboratories, in order to evaluate their compliance with the
FDA GLP regulation requirements (FDA 1979). Thereafter, the Organisation for
Economic Co-operation and Development (OECD) launched their GLP regulation in
Europe. Each country, which adopted GLP into their law, tended to add some
specificities to their application of GLPs.

Regulated research, which delivers data directly supporting patient safety, is one
research area, where GLP were mostly implemented successfully to ensure data
integrity and reliability for regulatory approval. Accredited regulatory research
laboratories employ continuously trained personnel to perform mainly routine anal-
ysis, following defined standard operating procedures (SOPs). Regulatory activities
are systematically reviewed/audited by quality assurance groups and inspected by
regulators. Thus, developing and maintaining GLP standards needs resources from
both research laboratories and regulatory bodies.

In contrast, early discovery research rarely delivers results, which directly impact
human health. Therefore the implementation of GxP standards might not be required
by the scope of discovery activities (Hickman et al. 2018). However, discovery
science would benefit from the use of best scientific practices and quality standards,
in order to enhance research robustness and effectiveness and proactively achieve
compliance. Many discovery laboratories, hosted either in academia, small biotechs
or industries, use cutting-edge technologies, constantly develop novel methods and
need the flexibility that GxP standards do not offer. Furthermore, when resources
are limited, as often in academia, the implementation of GxP standards is often
unbearable. In addition, governmental oversight would increase the burden on
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the part of the regulatory agencies to come up with specific regulations, check
documentation and perform additional inspections.

Therefore the main argument for not extending GxP regulation to non-GxP
research is that it would stifle the creativity of researchers, slow down innovation
and seriously limit early discovery research. Pragmatic, risk-based and science-
driven research quality standards could fit with the discovery activities’ scope
and requirement of this research activity and ensure data integrity while saving
resources.

2.1.1 Diverse Quality Mind-Set
The success of the development and implementation of a research quality standard
relies first on understanding the mind-set of GxP group associates and non-GxP
researchers.

Experienced GxP scientists, working in conventional science performing routine
well-developed and validated assays, generally apply standards consistently and
straightforwardly. Risks in such GxP areas are pretty well understood and predicate
rules apply. GxP researchers are used to audits and regulatory inspections. Quality
assurance departments usually have these activities under strict scrutiny and help
to ensure that study documentation is ready for inspection.

In early discovery, the oversight of quality professionals might be lighter. The
scientists might be less familiar with audit or inspections. Thus, many pharma
companies have implemented clear internal research guidelines, and a number
of universities have dedicated teams both to ensure data integrity and to conduct
scientists training.

Academic researchers operate under laboratory conditions similar to those in
industrial non-GxP research and are united in their commitment to produce high-
quality data. There are academic institutional and funder requirements to preserve
research data for at least 10 years after a research project ended, many of which
support scientific publications. However, there are varying levels of requirements
for documentation, aside from laboratory notebooks, which are still in paper format
at most universities, despite the fact that most data are nowadays created and
preserved in digital format. But the documentation practices are slowly adapting
in academic research laboratories: electronic laboratory notebooks are gaining
popularity (Dirnagl and Przesdzing 2016), and more and more institutions are
willing to cover licensing costs for their researchers (Kwok 2018). Another group
of academic stakeholders are funders, who have tightened the requirements in
the application phase. Grant application should include data management plans
describing processes to collect, preserve data and ensure their public access. These
promising developments might mark the beginning of documentation quality
standards in academic biomedical research.
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2.2 Resource Constraints

The development of phase-appropriate standards, which provide enough flexibility
for innovation and creativity while using best practices ensuring documentation
quality and data integrity, is complex and requires time and resources. Thus, both
a consistent senior management support and a strong partnership between quality
professionals and research groups are mandatory to succeed in both the implemen-
tation and the maintenance of the research quality standard.

Research groups, which have the right quality culture/mind-set, could require less
inputs from a quality organization.

While these requirements are relatively easy to implement in a pharmaceutical
setting, the current academic research environment presents a number of hindrances:
usually, academic institutions transfer the responsibilities for data integrity to the
principal investigators. While many universities have quality assurance offices, their
scope might be limited to quality of teaching and not academic research. Internal and
external funding sources do not always support a maintainable quality assurance
structure needed to achieve research quality characteristics including robustness,
reproducibility and data integrity (Begley et al. 2015). However, more and more
academia are increasing their efforts to address research quality.

3 Non-GxP Research Standard Basics

The foundation of any quality standards in regulated and non-regulated
environments are good documentation practices, based on data integrity principles,
named ALCOA+. Thus, a non-GxP Research standard should focuses on data
integrity and research reproducibility. The rigor and frequency of its application
need to be adapted to the research phase to which it is applied: in early discovery,
focus is laid on innovation, protection of intellectual property and data integrity.
In contrast, many other elements have to be consistently implemented, such as
robust method validation, equipment qualification in nonclinical confirmatory
activities or clinical samples analysis under exploratory objectives of clinical
protocols and early development.
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3.1 Data Integrity Principles: ALCOA+

Essential principles ensuring data integrity throughout the lifecycle are commonly
known by the acronym “ALCOA”. Stan Woollen first introduced this acronym
in the early 1990s when he worked at the Office of Enforcement, in the USA.
He used it to memorize the five key elements of data quality when he presented
the GLP and FDA’s overall BIMO program (Woollen 2010). Since then, QA
professionals used commonly the acronym ALCOA to discuss data integrity. Later
on, four additional elements, extracted from the Good Automated Manufacturing
Practice (GAMP) guide “A Risk-Based Approach to GxP Complaint Laboratory
Computerized Systems” (Good Automated Manufacturing Practice Forum 2012),
completed the set of integrity principles (ALCOA+). The ALCOA+ consists of a set
of principles, which underpins any quality standards:

Principle Meaning

Attributable The source of data is identified: who/when created a record and who/when/
why changed a record

Legible Information is clear and readable. In other words, documentation is
comprehensive and understandable without need for specific software or
knowledge

(continued)
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Contemporaneous Information is recorded at the time of data generation and/or event
observation

Original Source information is available and preserved in its original form

Accurate There are no errors or editing without documented amendments

Additional elements:

Principle Meaning

Complete All data is recorded, including repeat or reanalysis performed

Available Data is available and accessible at any time for review or audit and for the lifetime
of the record

Consistent Harmonized documentation process is constantly applied

Enduring Data is preserved and retrievable during its entire lifetime

In order to ensure data integrity and compliance with ALCOA+ principles, all
scientific and business practices should underpin the RQS. This standard needs to
contain a set of essential quality system elements that can be applied to all types of
research, in a risk-based and flexible manner. At a minimum, the following elements
should be contained.

3.2 Research Quality System Core Elements

3.2.1 Management and Governance
Management support is critical to ensure that resources are allocated to implement,
maintain and continuously improve processes to ensure sustained compliance with
RQS. Roles and responsibilities should be well defined, and scientists should be
trained accordingly. Routine quality system assessments, conducted by QA and/or
scientists themselves, should be also implemented.

3.2.2 Secure Research Documentation and Data Management
Scientists should document their research activities by following the ALCOA+
principles, in a manner to allow reproducibility and straightforward data reconstruc-
tion of all activities. Data management processes should ensure long-term data
security and straightforward data retrieval.

3.2.3 Method and Assay Qualification
Methods and key research processes should be consistently documented and
available for researchers conducting the activity. Assay acceptance/rejection criteria
should be predefined. Studies should be well designed to allow statistical relevance.
Routine QC and documented peer reviews of research activities and results
should be conducted to ensure good scientific quality and reliability. Any change
to the method should be documented.
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3.2.4 Material, Reagents and Samples Management
Research materials, reagents and samples should be fit for purpose and documented
in a manner to permit reproducibility of the research using equivalent items with
identical characteristics. Their integrity should be preserved through their entire life
cycle until their disposal, which should be consistent with defined regulation or
guidance. Research specimens should be labelled to facilitate traceability and storage
conditions.

3.2.5 Facility, Equipment and Computerized System Management
Research facilities should be fit for their research activity purpose and provide
safe and secure work environments. Research equipment and computerized system,
used in the laboratory, should be suitable for the task at hand and function properly.
Ideally, their access should be restricted to trained users only, and an activity log
should be maintained to increase data traceability.

3.2.6 Personnel and Training Records Management
Research personnel should be competent, trained to perform their research functions
in an effective and safe manner. Ideally, in industry environment, personnel and
training records should be maintained and available for review.

3.2.7 Outsourcing/External Collaborations
The RQS should be applied to both internal and external activities (conducted by
other internal groups, external research centres, academic laboratories or service
providers). Agreement to comply with requirements of RQS should be signed
off before starting any research work with research groups outside of the organiza-
tion. Assessment and qualification of an external partner’s quality system are
recommended and should be conducted in a risk-based manner (Volsen et al. 2014).

3.3 Risk- and Principle-Based Quality System Assessment
Approach

The risk-based and principle-based approaches are the standard biopharma industry
quality practice to balance resources, business needs and process burden in order to
maximize the impact of an assessment. The risk-based approach is essentially an
informed and intelligent way to prioritize frequency and type of assessment (remote,
on-site) across a large group of service providers.

The principle-based trend reflects the fact that it may not be possible to anticipate
and prescriptively address a myriad of emerging nuances and challenges in a rapidly
evolving field. Cell and gene therapy (e.g. CAR-NK and CAR-T), digital medicine,
complex drug/device interfaces and new categories of biomarkers are just some of
the recent examples demanding a flexible and innovative quality mind-set:
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• CAR-NK and CAR-T Immuno-oncology therapy is an example where patient is
treated with his own or donor’s modified cells. Multiple standards and regulations
apply. Researchers perform experiments under a combination of sections of
good clinical practice (GCP) and good tissue practice (GTP) in a hospital setting
(Tang et al. 2018a, b).

• Digital therapeutics are another emerging biopharmaceutical field
(Pharmaceuticalcommerce.com 2019). Developers utilize knowledge of wearable
medical devices, artificial intelligence and cloud computing to boost the effec-
tiveness of traditional chemical or biological drugs or create standalone therapies.
As software becomes a part of treatment, it brings a host of nontraditional quality
challenges such as health authority pre-certification, management of software
updates and patient privacy when using their own devices.

For the above examples, it is important to adhere to ALCOA+ principles as
no single quality standard can cover all the needs.

As quality is by design a support function to serve the needs of researchers,
business and traditional quality risk factors need to come together when calculating
an overall score.

A simple 3X4 Failure Mode and Effects Analysis (FMEA) – like risk matrix – can
be constructed using the following example:

Suppose that:

• A pharmaceutical company wants to use an external service provider and works
on coded human tissue, which is a regulated activity by law, in several countries,
such as Switzerland and the UK:
– Quality risk factor 1. Severity is medium.

• This laboratory was already audited by the quality assurance of the pharmaceuti-
cal company, and gaps were observed in data security and integrity. Remediation
actions were conducted by this laboratory to close these gaps:
– Quality risk factor 2. Severity is high.

• The planned activity will be using a well-established method that the pharma
company needs to transfer to the Swiss laboratory. Since the method need to
be handoff, the risk is medium:
– Business risk factor 1. Severity is medium.

• The data generated by the laboratory may be used later in an Investigational
New Drug (IND) Application. This is a submission critical, and it will be filed
to Health Authorities.
– Business risk factor 2. Severity is high.

Risk factor

Severity

Low Medium High

Quality 1 1 3 9

Quality 2 1 3 9

Business 1 1 3 9

Business 2 1 3 9
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The risk matrix is balanced for quality and business components. Final business risk
is calculated as a product of two business component severity scores such as
medium � high ¼ 3 � 9 ¼ 27. Quality risk is calculated in the same fashion.

4 How Can the Community Move Forward?

The improvement of research reproducibility is not only about process implementa-
tion but also about promoting quality culture. The research community needs to join
force to build a harmonized and recognized quality culture in research, providing
tools, guidelines and policies to ensure data quality and research reproducibility.

4.1 Promoting Quality Culture

A process might be far easier for building systems than building a culture of quality.
Very often goals are set around cost, speed and productivity. But what is the cost
of working on poor processes and with low quality?

In the Oxford dictionary, culture is defined as “The ideas, customs and social
behaviour of a particular people or society” and quality as “The standard of some-
thing as measured against other things of a similar kind; the degree of excellence of
something” (Oxford-Dictionary 2019). So what are the building blocks, which could
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allow the research community to build a strong quality culture and which elements
could influence scientist’s behaviours to strive for research excellence?

4.1.1 Raising Scientist Awareness, Training and Mentoring
In order to embark on the quality journey, researchers should understand the benefits
of embracing robust quality:

First Benefit: Help Ensure Their Sustained Success
Great science can lead to patents, publications, key portfolio management decisions,
scientific advances and drug submissions. Robust processes position researcher for
sustained success, preserving their scientific credibility and enabling, for example, to
defend their patent against litigation, make the right decisions, answer regulator’s
questions.

Second Benefit: Serve Patients and Advance Scientific Knowledge
The main researcher focus, which fuels their motivation to innovate and go forward,
is to advance scientific knowledge and discover new pathways, new drugs and new
treatment. Efficient processes enhance research effectiveness and lead to scientific
discoveries. Data integrity supports good science, drug safety, products and treat-
ment development for patients and customers.

Once awareness is raised, researchers need to be trained on basic documentation
processes and good scientific practices to ensure data integrity and quality. Targeted
training should be added on new guidelines, processes and regulations applied to
their specific activities (e.g. human tissue use, natural products, pharmacogenomics
activities).

4.1.2 Empowering of Associates
The best way to engage researchers is to empower them to perform some changes in
order to improve processes and systems. These changes need to be documented, fit
for purpose and organized within the quality framework, managed and governed by
the senior management. Managers should lead by example, embrace the change in
quality culture and interact more with their staff during study planning or laboratory
meetings. They should also encourage people to speak up when they observe
inaccuracies in the results or potential fraud.

4.1.3 Incentives for Behaviours Which Support Research Quality
A culture that emphasizes research quality can be fostered by providing appropriate
incentives for certain behaviours that are aligned with the quality objectives. Such
incentives can come in form of promotions, monetary rewards or public recognition.
Awards for best practices to ensure data integrity could be a start. Not all incentives
must be endured. Some are only necessary to introduce or change a certain practice.
Incentives permit an uptake to be measured and the more visible incentives within an
institution improve the reach. There is a great variability in effectiveness of a certain
incentive. Questionnaires are a useful instrument to find out which incentives are
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effective for a certain target research population. Any incentives that do not
promote quality need to be critically evaluated by the management (Lesmeister
2018; Finkel 2019).

4.1.4 Promoting a Positive Error Culture
“Error is human” and errors will happen in any research laboratory environment,
no matter what precautions are taken. However, errors can be prevented from
reoccurring and serve as teaching examples for quality assurance and risk manage-
ment. For this to happen, a positive error culture needs to be created by leaders that
embrace learning and do not punish reported errors. The possibility of anonymous
reporting is a crucial element as a seed for community trust, so error reporting is
not used for blaming and shaming. Next, a guided discussion of reported errors
with the laboratory personnel needs to take place, and potential consequences can be
discussed. Such a community effort empowers laboratory workers and makes them
part of the solution.

An example of a system to manage errors is the free “Laboratory Critical Incident
and Error Reporting System” (LabCIRS) software which permits to record all
incidents anonymously and to analyse, discuss and communicate them (Dirnagl
and Bernard 2018).

4.2 Creating a Recognized Quality Standard in Research: IMI
Initiative – EQIPD

Large pharmaceutical companies, service providers and academia are facing the
same challenges. They need to manage budget and portfolio, keep credibility and
serve customers and patients. Research reproducibility, accuracy and integrity are a
benefit to all. For the first time, an Innovative Medicines Initiative (IMI 2008) project
on quality was launched in October 2017, named European Quality In Preclinical
Data (EQIPD 2017). EQIPD is a 3-year project co-funded by the EU’s Innovative
Medicines Initiative (IMI 2008) and the European Federation of Pharmaceutical
Industries and Associations (EFPIA).

Pharmaceutical companies and academia joined forces to foster a quality culture
and develop a “unified non-GxP research quality standard”, which is expect to be
released in 2020 (Steckler et al. 2018; Macleod and Steckler 2019).

The aim of this project is to establish best practices, primarily in the preclinical
neuroscience field but also applicable to the overall non-GxP research, that are
harmonized across the pharmaceutical industry to improve data quality and repro-
ducibility in discovery and exploratory research. The EQIPD members are working
together to develop simple and sustainable solutions to facilitate implementation of
robust research quality systems and expansion of knowledge on principles necessary
to address robustness and quality.
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4.3 Funders Plan to Enhance Reproducibility and Transparency

The NIH proposed first to implement a mandatory training regarding result repro-
ducibility and transparency and good experimental design. Starting in 2019, the
NIH research grant applications now have to include components that address
reproducibility, rigor and transparency. Applications must include measures to
ensure robust and unbiased experimental design, methodology, analysis, interpreta-
tion and reporting of results. More relevant biological models should be considered,
and the rigor of prior research that the application is based on should be reviewed.
NIH asked publishers to get more involved, promote peer-review and data disclo-
sure. In addition, the whole research community is encouraged to work together in
order to improve research reproducibility (National-Institutes-of-Health-NIH 2019).

European funders as well aim to enhance reproducibility, mainly by increased
transparency and public data availability of research results. The most prominent EU
project with that goal is the European Open Science Cloud (EOSC 2018). A key
feature of the EOSC is that the shared data conforms to the FAIR criteria: findable,
accessible, interoperable and reusable (Wilkinson et al. 2016, 2019). Also at the
national funder level, more calls of applications emerge that specifically address
scientific rigor and robustness in non-GLP research (German-Federal-Ministry-of-
Education-and-Research 2018).

5 Conclusion

In conclusion, the strategic collaboration between pharmaceutical companies, ser-
vice providers and academia is critical to help develop both quality culture and
standards in research, which could help enhance research reproducibility and
data integrity. As resources are often limited, a pragmatic quality system combined
with a risk-based approach could mitigate the gaps and proactively address the ever-
changing regulatory environment, which continuously expands quality expectations.
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Abstract
This chapter explores existing data reproducibility and robustness initiatives from
a cross-section of large funding organizations, granting agencies, policy makers,
journals, and publishers with the goal of understanding areas of overlap and
potential gaps in recommendations and requirements. Indeed, vigorous stake-
holder efforts to identify and address irreproducibility have resulted in the
development of a multitude of guidelines but with little harmonization.
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This likely results in confusion for the scientific community and may pose a
barrier to strengthening quality standards instead of being used as a resource that
can be meaningfully implemented. Guidelines are also often framed by funding
bodies and publishers as recommendations instead of requirements in order to
accommodate scientific freedom, creativity, and innovation. However, without
enforcement, this may contribute to uneven implementation. The text concludes
with an analysis to provide recommendations for future guidelines and policies to
enhance reproducibility and to align on a consistent strategy moving forward.

Keywords
Data quality · Good research practice · Guidelines · Preclinical · Reproducibility

1 Introduction

The foundation of many health care innovations is preclinical biomedical research, a
stage of research that precedes testing in humans to assess feasibility and safety and
which relies on the reproducibility of published discoveries to translate research
findings into therapeutic applications.

However, researchers are facing challenges while attempting to use or validate
the data generated through preclinical studies. Independent attempts to reproduce
studies related to drug development have identified inconsistencies between
published data and the validation studies. For example, in 2011, Bayer HealthCare
was unable to validate the results of 43 out of 67 studies (Prinz et al. 2011), while
Amgen reported its inability to validate 47 out of 53 seminal publications that
claimed a new drug discovery in oncology (Begley and Ellis 2012).

Researchers attribute this inability to validate study results to issues of robustness
and reproducibility. Although defined with some nuanced variation across research
groups, reproducibility refers to achieving similar results when repeated under
similar conditions, while robustness of a study ensures that similar results can be
obtained from an experiment even when there are slight variations in test conditions
or reagents (CURE Consortium 2017).

Several essential factors could account for a lack of reproducibility and robustness
such as incomplete reporting of basic elements of experimental design, including
blinding, randomization, replication, sample size calculation, and the effect of sex
differences. Inadequate reporting may be due to poor training of the researchers to
highlight and present technical details, insufficient reporting requirements, or page
limitations imposed by the publications/journals. This results in the inability to
replicate or further use study results since the necessary information to do so is lacking.

The limited presence of opportunities and platforms to contradict previously
published work is also a contributing factor. Only a limited number of platforms
allow researchers to publish scientific papers that point out any shortcomings of
previously published work or highlight a negative impact of any of the components
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found during the study. Such data is equally essential and informative as any positive
data/findings from a study, and limited availability of such data can result in
irreproducibility.

Difficulty in accessing unpublished data is also a contributing factor. Negative or
validation data are rarely welcomed by high-impact journals, and unpublished dark
data related to published results (such as health records or performance on tasks
which did not result in a significant finding) may comprise essential details that may
help to reproduce the results of the study or build on its results.

For the past decade, stakeholders, such as researchers, journals, funders, and
industry leaders, have been aggressively involved in identifying and taking steps to
address the issue of reproducibility and robustness of preclinical research findings.
These efforts include maintaining and, in some cases, strengthening scientific quality
standards including examining and developing policies that guide research, increas-
ing requirements for reagent and data sharing, and issuing new guidelines for
publication.

One important step that stakeholders in the scientific community have taken is to
support the development and implementation of guidelines. However, the realm of
influence for a given type of stakeholder has been limited. For example, journals
usually issue guidelines related to reporting of methods and data, whereas funders
may issue guidelines pertaining primarily to study design and, increasingly, data
management and availability. In addition, the enthusiasm with which stakeholders
have tried to address the “reproducibility crisis” has led to the generation of a
multitude of guidelines. This has resulted in a littered landscape where there is
overlap without harmonization, gaps in recommendations or requirements that may
enhance reproducibility, and slow updating of guidelines to meet the needs of
promising, rapidly-evolving computational approaches. Worse yet, the perceived
increased burden to meet requirements and lack of clarity around what guidelines to
follow reduce compliance as it may leave researchers, publishers, and funding
organizations confused and overwhelmed. The goal of this chapter is to compile
and review the current state of existing guidelines to understand the overlaps,
perform a gap analysis on what may still be missing, and to make recommendations
for the future of guidelines to enhance reproducibility in preclinical research.

2 Guidelines and Resources Aimed at Improving
Reproducibility and Robustness in Preclinical Data

2.1 Funders/Granting Agencies/Policy Makers

Many funders and policy makers have acknowledged the issue of irreproducibility
and are developing new guidelines and initiatives to support the generation of data
that are robust and reproducible. This section highlights guidelines, policies, and
resources directly related to this issue in preclinical research by the major interna-
tional granting institutions and is not intended to be an exhaustive review of all
available guidelines, policies, and resources. Instead, the organizations reviewed
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represent a cross-section of many of the top funding organizations and publishers in
granting volume and visibility. Included also is a network focused specifically on
robustness, reproducibility, translatability, and reporting transparency of preclinical
data with membership spanning across academia, industry, and publishing.
Requirements pertaining to clinical research are included when guidance documents
are also used for preclinical research. The funders, granting agencies, and policy
makers surveyed included:

• National Institutes of Health (NIH) (Collins and Tabak 2014; LI-COR 2018;
Krester et al. 2017; NIH 2015, 2018a, b)

• Medical Research Council (MRC) (Medical Research Council 2012a, b, 2016a,
b, 2019a, b, c)

• The World Health Organization (WHO) (World Health Organization 2006,
2010a, b, 2019)

• Wellcome Trust (Wellcome Trust 2015, 2016a, b, 2018a, b, 2019a, b; The
Academy of Medical Sciences 2015, 2016a, b; Universities UK 2012)

• Canadian Institute of Health Research (CIHR) (Canadian Institutes of Health
Research 2017a, b)

• Deutsche Forschungsgemeinschaft (DFG)/German Research Foundation
(Deutsche Forschungsgemeinschaft 2015, 2017a, b)

• European Commission (EC) (European Commission 2018a, b; Orion Open
Science 2019)

• Institut National de la Santé et de la Recherche Médicale (INSERM) (French
Institute of Health and Medical Research 2017; Brizzi and Dupre 2017)

• US Department of Defense (DoD) (Department of Defense 2017a, b; National
Institutes of Health Center for Information Technology 2019)

• Cancer Research UK (CRUK) (Cancer Research UK 2018a, b, c)
• National Health and Medical Research Council (NHMRC) (National Health and

Medical Research Council 2018a, b, 2019; Boon and Leves 2015)
• Center for Open Science (COS) (Open Science Foundation 2019a, b, c, d;

Aalbersberg 2017)
• Howard Hughes Medical Institute (HHMI) (ASAPbio 2018)
• Bill & Melinda Gates Foundation (Gates Open Research 2019a, b, c, d, e)
• Innovative Medicines Initiative (IMI) (Innovative Medicines Initiative 2017,

2018; Community Research and Development Information Service 2017;
European Commission 2017)

• Preclinical Data Forum Network (European College of
Neuropsychopharmacology 2019a, b, c, d)
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2.2 Publishers/Journal Groups

Journal publishers and groups have been revising author instructions and publication
policies and guidelines, with an emphasis on detailed reporting of study design,
replicates, statistical analyses, reagent identification, and validation. Such revisions
are expected to encourage researchers to publish robust and reproducible data
(National Institutes of Health 2017). Those publishers and groups considered in
the analysis were:

• NIH Publication Guidelines Endorsed by Journal Groups (Open Science Founda-
tion 2019d)

• Transparency and Openness Promotion (TOP) Guidelines for Journals (Open
Science Foundation 2019d; Nature 2013)

• Nature Journal (Nature 2017, 2019; Pattinson 2012)
• PLOS ONE Journal (The Science Exchange Network 2019a, b; Fulmer 2012;

Baker 2012; Powers 2019; PLOS ONE 2017a, b, 2019a, b, c; Bloom et al. 2014;
Denker et al. 2017; Denker 2016)

• Journal of Cell Biology (JCB) (Yamada and Hall 2015)
• Elsevier (Cousijn and Fennell 2017; Elsevier 2018, 2019a, b, c, d, e, f, g;

Scholarly Link eXchange 2019; Australian National Data Service 2018)

2.3 Summary of Overarching Themes

Guidelines implemented by funding bodies and publishers/journals to attain data
reproducibility can take on many forms. Many agencies prefer to frame their
guidelines as recommendations in order to accommodate scientific freedom, creativ-
ity, and innovation. Therefore, typical guidelines that support good research
practices differ from principles set forth by good laboratory practices, which are
based on a more formal framework and tend to be more prescriptive.

In reviewing current guidelines and initiatives around reproducibility and robust-
ness, key areas that can lead to robust and reproducible research were revealed and
are discussed below.

Research Design and Analysis Providing a well-defined research framework and
statistical plan before initiating the research reduces bias and thus helps to increase
the robustness and reproducibility of the study.

Funders have under taken various initiatives to support robust research design and
analysis, including developing guidance on granting applications. These require
researchers to address a set of objectives in the grant proposal including the strengths
and weakness of the research, details on the experimental design and methods of the
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study, planned statistical analyses, and sample sizes. In addition, researchers are
often required to abide by existing reporting guidelines such as ARRIVE and asked
to provide associated metadata.

Some funders, including NIH, DFG, NHMRC, and HHMI, have developed well-
defined guidance documents focusing on robustness and reproducibility for
applicants, while others, including Wellcome Trust and USDA, have started taking
additional approaches to implement such guidelines. For instance, a symposium was
held by Wellcome Trust, while USDA held an internal meeting to identify
approaches and discuss solutions to include strong study designs and develop
rigorous study plans.

As another example, a dedicated annexure, “Reproducibility and statistical design
annex,” is required from the researchers in MRC-funded research projects to provide
information on methodology and experimental design.

Apart from funders, journals are also working to improve study design quality
and reporting, such as requiring that authors complete an editorial checklist before
submitting their research in order to enhance the transparency of reporting and thus
the reproducibility of published results. Nearly all journals, including Nature Jour-
nal of Cell Biology, and PLOS ONE and the major journal publisher Elsevier have
introduced this requirement.

Some journals are also prototyping alternate review models such as early publi-
cation to help verify study design. For instance, in Elsevier’s Registered Reports
initiative, the experimental methods and proposed analyses are preregistered and
reviewed before study data is collected. The article gets published on the basis of its
study protocol and thus prevents authors from modifying their experiments or
excluding essential information on null or negative results in order to get their
articles published. However, this has been implemented in a limited number of
journals in the Elsevier portfolio. PLOS ONE permits researchers to submit their
articles before a peer review process is conducted. This allows researchers/authors to
seek feedback on draft manuscripts before or in parallel to formal review or
submission to the journal.

Training and Support Providing adequate training to researchers on the impor-
tance of robust study design and experimental methods can help to capture relevant
information crucial to attaining reproducibility.

Funders such as MRC have deployed training programs to train both researchers
and new panel members on the importance of experimental design and statistics and
on the importance of having robust and reproducible research results.

In addition to a detailed guidance handbook for biomedical research, WHO has
produced separate, comprehensive training manuals for both trainers and trainees to
learn how to implement their guidelines. Also, of note, the Preclinical Data Forum
Network, sponsored by the European College of Neuropsychopharmacology
(European College of Neuropsychopharmacology 2019e) in Europe and Cohen
Veterans Bioscience (Cohen Veterans Bioscience 2019) in the United States,
organizes yearly training workshops to enhance awareness and to help junior
scientists further develop their experimental skills, with prime focus on experimental
design to generate high-quality, robust, reproducible, and relevant data.
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Reagents and Reference Material Developing standards for laboratory reagents
are essential to maintain reproducibility.

Funders such as HHMI require researchers to make all tangible research materials
including organisms, cell lines, plasmids, or similar materials integral to a publica-
tion through a repository or by sending them out directly to requestors.

Laboratory Protocols Providing detailed laboratory protocols is required to repro-
duce a study. Otherwise, researchers may introduce process variability when
attempting to reproduce the protocol in their own laboratories. These protocols can
also be used by reviewers and editors during the peer review process or by
researchers to compare methodological details between laboratories pursuing similar
approaches.

Funders such as INSERM took the initiative to introduce an electronic lab book.
This platform provides better research services by digitizing the experimental work.
This enables researchers to better trace and track the data and procedures used in
experiments.

Journals such as PLOS ONE have taken an initiative wherein authors can deposit
their laboratory protocols on repositories such as protocols.io. A unique digital
object identifier (DOI) is assigned to each study and linked to the Methods section
of the original article, allowing researchers to access the published work of these
authors along with the detailed protocols used to obtain the results.

Reporting and Review Providing open and transparent access to the research
findings and study methods and publishing null or negative results associated with
a study facilitate data reproducibility.

Funders require authors to report, cite, and store study data in its entirety, and
have developed various initiatives to facilitate data sharing. For instance, CIHR and
NHMRC have implemented an open access policy, which requires researchers to
store their data in specific repositories to improve discovery and facilitate interaction
among researchers, gain Creative Commons Attribution license (CC BY) for their
research to allow other researchers to access and use the data in parts or as a whole,
and link their research activities via identifiers such as digital object identifiers
(DOIs) and ORCID to allow appropriate citation of datasets and provide recognition
to data generators and sharers.

Wellcome Trust and Bill & Melinda Gates Foundation have launched their own
publishing platforms –Wellcome Open Research and Gates Open Research, respec-
tively – to allow researchers to publish and share their results rapidly.

Other efforts focused on data include the European Commission, which aims to
build an open research platform “European Open Science Cloud” that can act as a
virtual repository of research data of publicly funded studies and allow European
researchers to store, process, and access research data.
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In addition, the Preclinical Data Forum Network has been working toward
building a data exchange and information repository and incentivizing the publica-
tion of negative data by issuing the world’s first price for published “negative”
scientific results.

Journals have also taken various initiatives to allow open access of their
publications. Some journals such as Nature and PLOS ONE require data availability
statements to be submitted by researchers to help in locating the data, and accessing
details for primary large-scale data, through details of repositories and digital object
identifiers or accession numbers.

Journals also advise authors to upload their raw and metadata in appropriate
repositories. Some journals have created their separate cloud-based repository, in
addition to those publicly available. For instance, Elsevier has created Mendeley
Data to help researchers manage, share, and showcase their research data. And, JCB
has established JCB DataViewer, a cross-platform repository for storing large
amounts of raw imaging and gel data, for its published manuscripts. Elsevier has
also partnered with platforms such as Scholix and FORCE11, which allows data
citation, encouraging reuse of research data, and enabling reproducibility of
published research.

3 Gaps and Looking to the Future

A gap analysis of existing guidelines and resources was performed, addressing such
critical factors as study design, transparency, data management, availability of
resources and information, linking relevant research, publication opportunities,
consideration of refutations, and initiatives to grow. It should be noted that these
categories were not defined de novo but based on a comprehensive review of the
high-impact organizations considered.

We considered the following observed factors within each category to understand
where organizations are supporting good research practices with explicit guidelines
and/or initiatives and to identify potential gaps:

• Study Design
– Scientific premise of proposed research: Guidelines to support current or

proposed research that is formed on a strong foundation of prior work.
– Robust methodology to address hypothesis: Guidelines to design robust stud-

ies that address the scientific question. This includes justification and reporting
of the experimental technique, statistical analysis, and animal model.

– Animal use guidelines and legal permissions: Guidelines regarding animal use,
clinical trial reportings, or legal permissions.

– Validation of materials: Guidelines to ensure validity of experimental proto-
col, reagent, or equipment.

• Transparency
– Comprehensive description of methodology: Guidelines to ensure comprehen-

sive reporting of method and analysis to ensure reproducibility by other
researchers. For example, publishers may include additional space for
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researchers to detail their methodology. Similar to “robust methodology to
address hypothesis” but more focused on post-collection reporting rather than
initial design.

– Appropriate acknowledgments: Guidelines for authors to appropriately
acknowledge contributors, such as co-authors or references.

– Reporting of positive and negative data: Guidelines to promote release of
negative data, which reinforces unbiased reporting.

• Data Management
– Early design of data management: Guidelines to promote early design of data

management.
– Storage and preservation of data: Guidelines to ensure safe and long-term

storage and preservation of data.
– Additional tools for data collection and management: Miscellaneous data

management tools developed (e.g., electronic lab notebook).
• Availability of Resources and Information

– Data availability statements: A statement committing researchers to sharing
data (usually upon submission to a journal or funding organization).

– Access to raw or structured data: Guidelines to share data in publicly available
or institutional repositories to allow for outside researchers to reanalyze or
reuse data.

– Open or public access publications: Guidelines to encourage open or public
access publications, which allows for unrestricted use of research.

– Shared access to resources, reagents, and protocols: Guidelines to encourage
shared access to resources, reagents, and protocols. This may include
requirements for researchers to independently share and ship resources or
nonprofit reagent repositories.

• Linking Relevant Research
– Indexing data, reagents, and protocols: Guidelines to index research

components, such as data, reagent, or protocols. Indexing using a digital object
identifier (DOI) allows researchers to digitally track use of research
components.

– Two-way linking of relevant datasets and publications: Guidelines to encour-
age linkage between publications. This is particularly important in clinical
research when multiple datasets are compiled to increase analytical power.

• Publication Opportunities
– Effective review: Guidelines to expedite or strengthen the review process, such

as a checklist for authors or reviewers to complete or additional responsibilities
of the reviewer.

– Additional peer review and public release processes: Opportunities to release
research conclusions independent from the typical journal process.

– Preregistration: Guidelines to encourage preregistration, a process where
researchers commit to their study design prior to collecting data. This reduces
bias and increases clarity of the results.

• Consideration of Refutations
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– Attempts to resolve failures to reproduce: Guidelines for authors and
organizations to address any discrepancies in results or conclusions

• Initiatives to Grow
– Develop resources: Additional resources developed to increase reproducibility

and rigor in research. This includes training workshops.
– Work to develop responsible standards: Commitments and overarching goals

made by organization to increase reproducibility and rigor in research.

As part of the study design, it appeared that there is a dearth of guidelines to
ensure validity of experimental protocols, reagents, or equipment. Variability and
incomplete reporting of reagents used is a known and oft-cited source of
irreproducibility.

The most notable omission regarding transparency were guidelines to promote
the release of report negative data to reinforce unbiased reporting. This also results in
poor study reproducibility since, overwhelmingly, only positive data are reported for
preclinical studies.

Most funding agencies have seriously begun initiatives addressing data manage-
ment to ensure safe and long-term storage and preservation of data and are develop-
ing, making available, or promoting data management tools (e.g., electronic lab
notebook). However, these ongoing activities do not often include guidelines to
promote the early design of data management, which may reduce errors and ease
researcher burden by optimizing and streamlining the process from study design to
data upload.

To that point, a massive shift can be seen as both funders and publishers intensely
engage in guidelines around the availability of resources and information. Most of
this effort is in the ongoing development of guidelines to share data in publicly
available or institutional repositories to allow for outside researchers to reanalyze or
reuse data. This is to create a long-term framework for new strategies to research that
will allow for “big data” computational modeling, deep-learning artificial intelli-
gence, and mega-analyses across species and measures. However, not many
guidelines were found that encourage shared access to resources, reagents, and
protocols. This may include requirements for researchers to independently share
and ship resources or nonprofit reagent repositories.

Related are guidelines for linking relevant research. This includes guidelines to
index research components, such as data, reagents, or protocols with digital object
identifiers (DOIs) that allow researchers to digitally track the use of research
components and guidelines to encourage two-way linking of relevant datasets and
publications. This is historically a common requirement for clinical studies and is
currently being developed for preclinical research, but not consistently across the
organizations surveyed.

On the reporting side, the most notable exclusion to publication opportunities
guidelines were those that encourage preregistration, a process whereby researchers
commit to their study design prior to collecting data and publishers agree to publish
results whether they be positive or negative. These would serve to reduce both
experimental and publication biases and increase clarity of the results.
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In the category consideration of refutations, which, broadly, are attempts to
resolve failures to reproduce a study, few guidelines exist. However, there is ongoing
work to develop guidelines for authors and organizations to address discrepancies in
results or conclusions and a commitment from publishers that they will consider
publications that do not confirm previously published research in their journal.

Lastly, although many organizations cite a number of initiatives to grow, there
appear to be notable gaps both in the development of additional resources and work
to develop responsible standards. One initiative that aims to develop solutions to
address the issue of data reproducibility in preclinical neuroscience research is the
EQIPD (European Quality in Preclinical Data) project, launched in October 2017
with support from the Innovative Medicines Initiative (IMI). The project recognizes
poor data quality as the main concern resulting in the non-replication of studies/
experiments and aims to look for simple, sustainable solutions to improve data
quality without impacting innovation. It is expected that this initiative will lead to
a cultural change in data quality approaches in the medical research and drug
development field with the final intent to establish guidelines that will strengthen
robustness, rigor, and validity of research data to enable a smoother and safer
transition from preclinical to clinical testing and drug approval in neuroscience
(National Institutes of Health 2017; Nature 2013, 2017; Vollert et al. 2018).

In terms of providing additional resources, although some organizations empha-
size training and workshops for researchers to enhance rigor and reproducibility, it is
unclear if and how organizations themselves assess the effectiveness and actual
implementation of their guidelines and policies. An exception may be WHO’s
training program, which provides manuals for both trainer and trainee to support
the implementation of their guidelines.

More must also be done to accelerate work to develop consensus, responsible
standards. As funders, publishers, and preclinical researchers alike begin
recognizing the promise of computational approaches and attempt to meet the
demands for these kinds of analyses, equal resources and energy must be devoted
to the required underlying standards and tools. To be able to harmonize data across
labs and species, ontologies and CDEs must be developed and researchers must be
trained and incentivized to use them. Not only may data that have already been
generated offer profound validation opportunities but also the ability to follow novel
lines of research agnostically based on an unbiased foundation of data. In acquiring
new data, guidelines urging preclinical scientists to collect and upload all experi-
mental factors, including associated dark data in a usable format may bring the field
closer to understanding if predictive multivariate signatures exist, embrace
deviations in study design, and may be more reflective of clinical trials.

Overall, the best path forward may be for influential organizations to develop a
comprehensive plan to enhance reproducibility and align on a standard set of
policies. A coherent road map or strategy would ensure that all known factors related
to this issue are addressed and reduce complications for investigators.
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Abstract
Thousands of pharmacology experiments are performed each day, generating
hundreds of drug discovery programs, scientific publications, grant submissions,
and other efforts. Discussions of the low reproducibility and robustness of some
of this research have led to myriad efforts to increase data quality and thus
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reliability. Across the scientific ecosystem, regardless of the extent of concerns,
debate about solutions, and differences among goals and practices, scientists
strive to provide reliable data to advance frontiers of knowledge. Here we share
our experience of current practices in nonclinical neuroscience research across
biopharma and academia, examining context-related factors and behaviors that
influence ways of working and decision-making. Drawing parallels with the
principles of evidence-based medicine, we discuss ways of improving transpar-
ency and consider how to better implement best research practices. We anticipate
that a shared framework of scientific rigor, facilitated by training, enabling tools,
and enhanced data sharing, will draw the conversation away from data unreliabil-
ity or lack of reproducibility toward the more important discussion of how to
generate data that advances knowledge and propels innovation.

Keywords
Data reliability · Decision-making · Evidence-based medicine · Nonclinical
pharmacology · Research methodology

1 Introduction

Over the last 10 years, debate has raged about the quality of scientific evidence,
expanding from a conversation among experts, amplified by systematic reviews and
meta-analyses published in peer-reviewed journals, into a heated discussion splashed
across mainstream press and social media. What is widely perceived as a “reproduci-
bility crisis” is the subject of countless, and sometimes inaccurate, statements on the
poor “reproducibility,” “replicability,” insufficient “rigor,” “robustness,” or “validity”
of data and conclusions. In the context of nonclinical pharmacological data, these are
cited as foundational for later clinical trial failure. The decision to advance a com-
pound to human testing is based on a substantial body of evidence supporting the
efficacy and safety of a therapeutic concept. Nonclinical studies that support, for
example, an investigational new drug (IND) filing or a clinical trial application
(CTA), which gate studies in humans, are reviewed under quality control procedures;
most safety studies must comply with regulations laid out by health authorities,
whereas nonclinical efficacy studies are usually performed in a nonregulated environ-
ment (see chapter “Quality in Non-GxP Research Environment”). If clinical trial
results support both efficacy and safety of the intervention, health authorities review
all of the evidence, to determine whether or not to approve a new therapeutic.

Once a new therapeutic is made available to patients and their physicians, clinical
trial findings and real-world observations contribute to forming a larger body of
evidence that can be used for decision-making by a physician considering which
treatment option would best benefit a patient. In many countries, medical students
are taught to critically appraise all the accessible information in order to choose the
“best possible option,” based upon the “best possible evidence”; this process is part
of evidence-based medicine (EBM), also known as “medicine built on proof.” In
EBM, clinical evidence is ranked according to the risk of underlying bias, using the
available sources of evidence, from case studies through randomized, controlled
clinical trials (RCTs) to clinical trial meta-analyses. Well-designed randomized trial
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results are generally viewed to be of higher reliability, or at least less influenced by
internal bias, than observational studies or case reports. Since meta-analysis aims to
provide a more trustworthy estimate of the effect and its magnitude (effect size),
meta-analyses of RCTs are regarded as the most reliable source for recommending a
given treatment, although this can be confounded if the individual RCTs themselves
are of low quality.

A well-established framework for rating quality of evidence is the Grading of
Recommendations, Assessment, Development, and Evaluation (GRADE) system
(http://www.gradeworkinggroup.org). GRADE takes the EBM process a step fur-
ther, rating a body of evidence, and considering internal risk of bias, imprecision,
inconsistency, indirectness, and publication bias of individual studies as reasons for
rating the quality of evidence down, whereas a large effect, or a dose-response
relationship, can justify rating it up (Balshem et al. 2011). The Cochrane Collabora-
tion, which produces systematic reviews of health interventions, now requires
authors to use GRADE (https://training.cochrane.org/grade-approach). The British
Medical Journal has developed a suite of online tools (https://bestpractice.bmj.com/
info/us/toolkit) with a section on how to use GRADE, and various electronic
databases and journals that summarize evidence are also available to clinicians. In
a recent development, the GRADEWorking Group has begun to explore how to rate
evidence from nonclinical animal studies, and the first attempt to implement
GRADE in the nonclinical space has successfully been performed on a sample of
systematic reviews and examples, with further efforts planned (Hooijmans et al.
2018). In contrast, with the exception of those who also have medical training or
clinical research experience, most scientists are unaware of the guiding principles of
EBM and are unfamiliar with formal decision-enabling algorithms. At least in part
due to the diversity of nonclinical experiments, systematic reviews and meta-
analyses are far less common in nonclinical phases than in clinical ones, and there
are very few broadly accepted tools with which to assess nonclinical data quality
(Hooijmans et al. 2018; Sena et al. 2014). Pioneering work in this area came from the
stroke field, with nonclinical research guidelines and an assessment tool elaborated
by STAIR, the Stroke Therapy Academic Industry Roundtable (Hooijmans et al.
2014) (https://www.thestair.org). The CAMARADES collaboration (originally the
“Collaborative Approach to Meta-Analysis and Review of Animal Data from Exper-
imental Stroke”) has now extended its scope to support groups wishing to undertake
systematic reviews and meta-analyses of animal studies in research on neurological
diseases (http://www.dcn.ed.ac.uk/camarades). The Systematic Review Centre for
Laboratory Animal Experimentation (SYRCLE) has designed a comprehensive
method to systematically review evidence from animal studies (Hooijmans et al.
2014), based on the Cochrane risk of bias tool. SYRCLE’s tool covers different
forms of bias and several domains of study design, many of which are common to
both clinical and nonclinical research (Table 2 in Hooijmans et al. 2014). As a
consequence, measures known to reduce bias in clinical settings, such as randomi-
zation and blinding, are recommended for implementation in nonclinical research.
Although the tool was primarily developed to guide systematic reviewers, it can also
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be used to assess the quality of any in vivo experimental pharmacology study.
However, these structured approaches have had limited uptake in other fields.

The attention to sources of bias that can influence study conduct, outcomes, and
interpretation is an essential element of EBM. A catalog of bias is being collabora-
tively constructed, to map all the biases that affect health evidence (https://
catalogofbias.org). In the nonclinical space, despite a number of publications and
material from training courses and webinars (e.g., http://neuronline.sfn.org/
Collections/Promoting-Awareness-and-Knowledge-to-Enhance-Scientific-Rigor-in-
Neuroscience), an equivalent, generalizable framework, or a common standard for
rating evidence quality is lacking, as is a unified concept of what constitutes the best
possible material for decision-making. Discussions are also limited by confusing and
varied terminology, although attempts have been made to clarify and harmonize
terms and definitions (Goodman et al. 2016). Here we will use the word “reliability,”
in its generally accepted sense of accuracy and dependability, of something one
expects to be able to rely on to make a decision. As a consequence, reliability also
reflects the extent to which something can consistently be repeated. Both meanings
apply to experimental pharmacology studies in all parts of the biomedical
ecosystem.

The EBM framework is used to find reliable answers to medical questions. Here
we will describe the purposes, current practices, and factors that contribute to bias in
addressing scientific questions. We will consider which EBM principles can apply to
nonclinical pharmacology work and how to strengthen our ability to implement best
research practices, without limiting innovation that is urgently needed.

2 Current Context of Nonclinical, Nonregulated
Experimental Pharmacology Study Conduct: Purposes
and Processes Across Sectors

2.1 Outcomes and Deliverables of Nonclinical Pharmacology
Studies in Industry and Academia

Experimental pharmacology studies in biopharma companies and nonclinical con-
tract research organizations (CROs) can have various purposes, such as furthering
the understanding of a disease mechanism, developing a model or assay, or
characterizing the effects of a novel compound. Such studies can also document a
patent application and/or generate data on the efficacy or safety of a compound that
is to enter clinical development, in which case the study report may ultimately be
part of a regulatory submission to a health authority. In academia, the primary goal is
to provide experimental evidence to answer scientific questions and disseminate new
knowledge by publishing the findings; academic scientists also occasionally file
patents and, in collaboration with biopharma companies, perform studies that may in
turn become part of regulatory submission dossiers. Academic drug discovery
platforms, which have sprouted in recent years, mainly aim to provide nonclinical

38 I. A. Lefevre and R. J. Balice-Gordon

https://catalogofbias.org
https://catalogofbias.org
http://neuronline.sfn.org/Collections/Promoting-Awareness-and-Knowledge-to-Enhance-Scientific-Rigor-in-Neuroscience
http://neuronline.sfn.org/Collections/Promoting-Awareness-and-Knowledge-to-Enhance-Scientific-Rigor-in-Neuroscience
http://neuronline.sfn.org/Collections/Promoting-Awareness-and-Knowledge-to-Enhance-Scientific-Rigor-in-Neuroscience


data that will be further leveraged in biopharma drug discovery programs, although it
is increasingly common that these data are used to advance clinical studies as well.

Different business models and end goals across academia and industry, and
different outcomes of nonclinical research, imply different processes and
deliverables, which can be associated with a step or feature in EBM, as described
in Table 1.

Investigating a scientific hypothesis is often done in a stepwise manner; from an
initial idea, several questions can be asked in parallel, and answers are generated in
both an incremental and iterative manner, by performing additional experiments and
repeating cycles. Choices and decisions are made at each step, based on data; if these
data are under- or overestimated, their interpretation will be biased, affecting
subsequent steps. For example, in a drug discovery project, inaccurate estimates of
in vitro potency or in vivo efficacy can skew the doses tested in nonclinical safety
experiments, and bias the estimate of the dosage range in which only the desired
response is observed in nonclinical species, and, most importantly, affect the
subsequent determination of the corresponding dosage range to be tested in humans.
As sponsors of clinical trials, among other responsibilities, biopharma companies
have an ethical duty to conduct human trials only if there is a solid foundation for a
potential clinical benefit with limited safety risks. In academic research, individuals
and institutions are accountable to funders and to the community for contributing to
the body of scientific knowledge. In all fields and sectors, biased interpretations of
experimental data can result in wasted experiments; scientists are therefore respon-
sible for the quality of the evidence generated.

2.2 Scientific Integrity: Responsible Conduct of Research
and Awareness of Cognitive Bias

Over the last two decades, many governments and agencies involved in funding and
conducting research have taken a strong stance on scientific integrity, issuing
policies and charters at international, national, and institutional levels. Compliance
with these policies is mandatory for employees and scientists applying for funding
(examples: MRC, https://mrc.ukri.org/publications/browse/good-research-practice-
principles-and-guidelines; NIH, https://grants.nih.gov/policy/research_integrity/
what-is.htm; CNRS, http://www.cnrs.fr/comets/IMG/pdf/guide_2017-en.pdf). Sci-
entific integrity means absolute honesty, transparency, and accountability in the
conduct and reporting of research. Responsible research practices encompass the
adherence to these principles and the systematic use of measures aiming to reduce
cognitive and experimental bias.

Training on responsible scientific conduct is nowmandatory at masters or PhD level
inmany universities; at any stage of their career, scientists can access training resources
on scientific integrity and responsible research practices (see list made by EMBO,
http://www.embo.org/science-policy/research-integrity/resources-on-research-integ
rity; NIH, Responsible Conduct of Research Training, https://oir.nih.gov/sourcebook/
ethical-conduct/responsible-conduct-research-training; Mooc, https://www.fun-mooc.
fr/courses/course-v1:Ubordeaux+28007EN+session01/about#). The US Department
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Table 1 Parallel between EBM and nonclinical research purposes and processes across
organizations

In private sector nonclinical
research

In academic nonclinical
research In EBM

Outcomes and
deliverables

Patents (intellectual
property)
Decision to move a
compound to clinical
development
Nonregulated study reports
CRO study reports, data for
customers
Additions to catalog

Publications
Patents (intellectual
property)
Study reports and data
provided to public or
private funders

Recommendations
Guidelines
Treatment decisions

Process Purpose in biopharma
companies and CROs

Purpose in academia Relevant EBM
feature

Initiating a research
project

Driven by company strategy
Triggered by prior data,
exploratory studies,
literature
CROs: mainly triggered by
requests from customers and
market opportunities

Driven by science and
funding opportunities
Triggered by prior data,
exploratory studies,
literature, serendipity

Framing a question,
collecting all
available data, and
ranking quality of
evidence

Existence and use
of guidelines

Company nonclinical quality
and compliance rules, best
research practice guidelines,
patent department rules

Variable; rules of
institutions, funding
agencies, grant
applications, journals, built
into collaborations

Guidelines on use of
EBM and EBM
guidelines

Use of
experimental bias
reduction measures
in study design and
execution

Variable; field-dependent
Detailed study plans usually
mandatory for compounds
selected to enter clinical
development (less so for
early test compounds) and
systematically used by
CROs

Variable; field-dependent;
funding or grant-
dependent; increasing due
to pressure from funders,
journals, peers; awareness
that credibility is suffering

Core feature of
EBM: studies with
lowest risk of bias
assumed to be most
reliable

Biostatistics:
access and use

Company biostatisticians
and software (mostly
proprietary); mandatory
review of statistical analyses
for compounds entering
clinical development
CROs: variable

Variable, somewhat “do-it-
yourself”: depending on
statistical literacy or access
to relevant expertise,
widespread use of
commercially available
suites, free online tools

Adequate study
power
Meta-analyses

Data: integrity,
access, and sharing

Electronic lab notebooks,
electronic data storage,
dedicated budgets
Mandatory archive of all
data and metadata for
clinical stage compounds
Restricted company-only
access

Variable, depending on
institution and resources, in
particular to fund long-term
safekeeping of data
Ability to access data
highly variable

Access to all data in
real time
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of Health and Human Services Office of Research Integrity has developed responsible
conduct of research training courses that incorporate case studies from an academic
research context (https://ori.hhs.gov/rcr-casebook-stories-about-researchers-worth-
discussing). Several companies have adopted a similar case-based approach from a
biopharma context.

Inaccuracy and biased interpretations are not necessarily due to purposeful
scientific misconduct; in fact, most of the time, they are inadvertent, as the conse-
quence of poor decision-making, training, or other circumstances. Mistakes can be
made and can remain undetected when there is no formal process to critically review
study design in advance of execution, an essential step when study outcomes gate
decisions with long-term consequences, in particular for human subjects and
patients. One aspect of review is to examine the multiple forms of bias that
compromise data reliability, confounding evidence, and its analysis and interpreta-
tion. Experimental protocols can be biased, as can be experimenters, based on
individual perceptions and behaviors: this is known as cognitive bias, i.e., the
human tendency to make systematic errors, sometimes without even realizing
it. Particularly problematic is confirmation bias, the tendency to seek and find
confirmatory evidence for one’s beliefs, and to ignore contradictory findings.
Scientists can work to develop evidence to support a hypothesis, rather than evi-
dence to contradict one. Beyond designing and performing experiments to support a
hypothesis, confirmation bias can extend to reporting only those experiments that
support a particular expectation or conclusion. While confirmation bias is generally
subconscious, competition – for resources, publications, and other recognitions –

can obscure good scientific practice. Confirmation bias can be both a cause and a
consequence of publication or reporting bias, i.e., omissions and errors in the way
results are described in the literature or in reports; it includes “positive” results bias,
selective outcome reporting bias, “Hot stuff” bias, “All is well literature” bias, and
one-sided reference bias (see definitions in https://catalogofbias.org).

In industry and academia, there are both common and specific risk factors
conducive to cognitive bias, and awareness of this bias can be raised with various
countermeasures, including those listed in Table 2.

2.3 Initiating a Research Project and Documenting Prior Evidence

Scientists running nonclinical pharmacology studies may have different goals,
depending on where they work, but initiating a research project or study is driven
by questions arising from prior findings in all parts of the biomedical ecosystem.
When deciding to test a new hypothesis from emergent science, or when setting up a
novel experimental model or assay, scientists generally read a handful of articles or
reviews, focusing on the most recent findings. Many scientists methodically formu-
late an answerable question, weighing the strength of the available evidence and
feasibility as primary drivers. Published findings can be weighed heavily as “truth,”
or disregarded, based on individual scientific judgment and many other factors.
When subjective factors, such as journal impact factor, author prominence, or
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other subjective reasons, are weighed more heavily than the strength of the evidence,
a form of bias is embedded from the conception of a research project. Similarly to the
flowchart approach used in EBM, where the first step is to frame the clinical question
and retrieve all the related evidence, explicitly defining a question and systematically
reviewing the literature should be a common practice in nonclinical pharmacology.
When deciding to work on a target, biopharma scientists also have to consider
whether modulating it could potentially result in adverse effects, so the background
evidence to be weighed may have other aspects than for an academic research
project. An obstacle to a comprehensive assessment of prior data is that data can
be published, unpublished, undisclosed, or inaccessible behind a paywall or
another company’s firewall or simply out of reach due to past archival practices
(see Sect. 2.7). Publication and selective outcome reporting biases will therefore be
present in most attempts to review and weigh prior evidence. Thus, in practice, the
data a scientist will evaluate at the start of a research project is often incomplete,
raising the possibility of flawed experimental design, execution and interpretation, as
well as the risk of confirmation and related biases.

Table 2 Factors that contribute to manifestations of bias and potential countermeasures

Contributing factors
In biopharma companies and
CROs In academia

Awareness and
knowledge of risks
of bias or
misconduct

Multiple levels of review and
quality control can highlight
unconscious biases
In-house training programs on
responsible conduct of research
increasingly common

Growing number of online
material and training programs
(see examples in Sect. 2.2)

Risk factors
conducive to bias or
misconduct

“Pace of business”: compensation
linked to performance/timelines,
competitive landscape, career
aspirations, customer deadlines

“Publish or perish”: priority given
to novel findings due to academic
competition, career aspirations,
funding mechanisms, and
durations

Measures and
incentives to
increase responsible
conduct

Occasional individual performance
metrics
CROs: responsible conduct linked
to credibility, a key factor of
company success

Recognition, publication, citation
in leading journals with strict
reporting guidelines, awards for
reproducibility attempts (e.g.,
https://www.ecnp.eu/research-
innovation/ECNP-Preclinical-
Network-Data-Prize.aspx)
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2.4 Existence and Use of Guidelines

Recommendations on how to design and conduct nonclinical, nonregulated research
studies can be found in scientific publications, in scientific society or institution
guidelines, and in grant application guidelines. Although recommended “best
research practices” have been around for at least a decade, there are no consensus,
universal nonclinical pharmacology quality guidelines, but instead a collection of
constantly evolving, context, and type-of-experiment-specific suggestions.

Biopharma companies and nonclinical CROs generally have internal guidelines.
Scientists are expected to record results in real time in laboratory notebooks, should
an organization or individual need to document data and timelines to establish
inventorship. Guidelines produced by research quality departments therefore focus
on how scientists should record the results of their research, and deviations from
standard operating procedures, in order to fulfill legal and regulatory requirements,
more than on study design or the use of measures to reduce experimental bias. In the
private sector, research quality guidelines and best practice recommendations are
generally confidential documents. In publications, research quality guidelines and
implementation are rarely mentioned. While indirect, study reporting guidelines (see
Sect. 2.7) are slightly more cited, but determining to what extent these were followed
is far from trivial.

2.5 Use of Experimental Bias Reduction Measures in Study
Design and Execution

The core principle of EBM is that the most reliable evidence comes from clinical
studies with the lowest risk of bias and typically those that are designed with
adequate power, randomization, blinding, and a pre-specified endpoint, in a clini-
cally relevant patient population. There are many resources to help investigators plan
human studies, such as the SPIRIT statement (http://www.spirit-statement.org), an
evidence-based guideline for designing clinical trial protocols, which is being
developed into a web-based protocol building tool. There are fewer resources to
assist scientists in designing nonclinical studies; an example is the NC3Rs’ Experi-
mental Design Assistant (EDA, https://www.nc3rs.org.uk/experimental-design-assis
tant-eda) for in vivo animal studies. Experimental protocols can be found in
publications or online, but they are primarily written to provide details on technical
aspects, and do not always explicitly address the different sources of
experimental bias.

In biopharma research, study plans which describe the study design and experi-
mental methods in full detail, including the planned statistical methods and analyses,
and any deviations to these plans as the study progresses, are usually mandatory for
studies that are critical for decision-making. Study plans are more rarely written for
exploratory, pilot studies. Nonclinical CROs use study plan templates that include
statistical analysis methodologies, which are generally shared with customers. In our
experience, CROs and academic drug discovery centers are very willing to discuss
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and adapt study designs to suit customer needs. Collaboratively building a study plan
is a good opportunity to share knowledge, ensure that a study is conducted and
reported according to expectations, and work to identify and reduce conscious and
unconscious biases. Across all sectors, planning ahead for in vivo pharmacology
studies is more elaborate than for in vitro experiments, due to animal ethics
requirements and the logistics of animal care and welfare. However, nonclinical
study plans are not normally published, whereas clinical trial protocols are available
in online databases such as the EU (https://www.clinicaltrialsregister.eu) and US
(https://clinicaltrials.gov/) registers. A few initiatives, such as OSF’s “preregistration
challenge” (Open Science Foundation, Preregistration Challenge, Plan, Test, Dis-
cover, https://osf.io/x5w7h), have begun to promote formal preregistration of non-
clinical study protocols, as a means to improve research quality (Nosek et al. 2018).
However, preregistering every single nonclinical pharmacological study protocol in
a public register would be difficult in practice, for confidentiality considerations, but
also due to a perceived incompatibility with the pace of research in all sectors.

Overall, our experience in the field of neuroscience is that the implementation of
experimental bias reduction measures is highly variable, within and across sectors,
and meta-analyses of scientific publications have shown that there is clearly room for
improvement, at least in the reporting of these measures (van der Worp et al. 2010;
Egan et al. 2016).

Different field- and sector-related practices and weights on bias reduction
measures, such as blinding and randomization (see chapter “Blinding and Randomi-
zation”), can be expected. In the clinical setting, blinding is a means to reduce
observer bias, which, along with randomization to reduce selection bias, underlies
the higher ranking of RCTs over, for example, open-label trials. Both blinding and
randomization are relevant to nonclinical studies because the awareness of treatment
or condition allocation can produce observer bias in study conduct and data analysis.
Neurobehavioral measures are among the most incriminated for their susceptibility
to observer bias. But even automated data capture can be biased if there are no
standards for threshold and cutoff values. Observer bias is also a risk, for example,
when visually counting immunolabeled cells, selecting areas for analysis in brain
imaging data, and choosing recording sites or cells in manual electrophysiology
experiments. Blinding has its limitations; blinding integrity may lost, such as when
using transgenic mice (which are often noticeably different in appearance or behav-
ior compared to wild-type littermates) or in pathological settings that induce visible
body changes, and the experimenter’s unawareness of group allocation will not be
sufficient to limit the effect observing animals can have on their behavior (analogous
to the Hawthorne effect in social sciences, see https://catalogofbias.org/biases/
hawthorne-effect/).

Differences in resource availability will influence practices, since training
experimenters, standardizing animal handling and husbandry, and earmarking suit-
able lab space and equipment, among other considerations, are contingent upon
funding. Nonclinical CROs are most likely to have strong guidelines, or at least
evidence-based standard operating procedures, and to follow them, since credibility,
transparency, and customer satisfaction are business-critical. The systematic use of
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inclusion/exclusion criteria and blinding should be implemented as standard practice
in all sectors of the biomedical ecosystem. However, while in the industry there is a
tendency to optimize workflows through standardization, and similarly in academia,
strong lab “traditions,” one size does not necessarily fit all. Specific technical
constraints may apply, in particular for randomization. For instance, in some
in vitro experiments, features such as “edge effect” or “plate effect” need to be
factored into the randomization procedure (https://paasp.net/simple-randomisation);
liquid chromatography-coupled mass spectrometry experiments require additional
caution, since randomizing the order in which samples from different groups or
conditions are tested may be counterproductive if the risk of potential cross-
contamination is not addressed. Randomizing the order of procedures, while often
a sound measure to prevent procedural bias, may actually increase the risk of bias, if
animals behave differently depending on prior procedures or paradigms. While
randomization and blinding will generally be effective in reducing risks of selection
and observer bias, they have no effect on non-contemporaneous bias, when control
groups or samples are tested or analyzed at a separate time from treated ones.

Thus, both in EBM and in nonclinical research, high-quality designs aim to take
into account all of the known sources of bias and employ the best available
countermeasures. Among these, there are two universally critical items, a
pre-specified endpoint with an estimate of the predicted effect size and the
corresponding adequate statistical power to detect the predicted effect, given the
sample size, all of which require a prior statistical plan.

2.6 Biostatistics: Access and Use to Enable Appropriate Design
of Nonclinical Pharmacology Studies

Establishing an a priori statistical plan, as part of the study design, remains far from
customary in nonclinical pharmacology, mainly because scientists can lack the
adequate awareness and knowledge to do so. The latest Research Integrity report
by the Science and Technology Committee in the UK (https://publications.parlia
ment.uk/pa/cm201719/cmselect/cmsctech/350/350.pdf) emphasized that scientists
need to learn and understand the principles of statistics, rather than simply being
told of a list of statistical tests and software that does the analyses. In our experience,
biologists’ statistical proficiency appears to mostly be based on local custom and
varies widely even in the same field of biology. This is illustrated by misleading
phrases in methods sections of publications, such as “the number of animals used
was the minimum required for statistical analysis,” or “post hoc comparisons were
carried out between means as appropriate,” or “animals were randomly assigned to
4 groups,” or “the experiments were appropriately randomized” (sic). A side effect
of this phenomenon is that it hampers critical assessments of published papers;
biologists confronted with unfamiliar terms may struggle to capture which study
designs and analyses were actually conducted.

In practice, more attention is paid to statistics once the data have been generated.
In nonclinical CROs the statistical analyses are provided to the customer in the full
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study reports. In biopharma companies, for clinical development candidate
compounds, it is generally mandatory that the proposed statistical analyses are
developed and/or validated by a statistician. Many companies have developed robust
proprietary statistics software, with specific wording and a selection of internally
approved tests and analysis tools. Although in-house applications are validated and
updated, they are not ideal for sharing results and analyses with external partners.
Overall, and despite a call for cultural change in the interactions between scientists
and nonclinical statisticians (Peers et al. 2012), it seems that the nonclinical pharma-
cology community remains under-resourced in this area. Insight gained through
discussions on data quality among partners of several European initiatives suggests
that there are too few research biostatisticians in all biomedical arenas.

When a thorough process is established beforehand, choosing a pre-specified
endpoint to test a hypothesis and estimating an effect size for this endpoint are
essential. While both are required in EBM, these are less common in nonclinical
research. Clinical studies aim to detect a predetermined effect size, or a clinically
relevant direction and effect magnitude, based on prior knowledge. In contrast,
scientists generally have a rough idea of values that would be negligible, due to
biological variation or to inaccuracy or imprecision, but considering which values
are biologically meaningful tends to be done after, rather than before, running an
experiment. When generating a hypothesis, i.e., in exploratory or pilot studies, it
may be possible to choose an endpoint of interest, without necessarily defining its
direction and amplitude. In contrast, prior estimates of effect size are essential when
the aim is to demonstrate a pharmacological effect in confirmatory studies upon
which decisions about next steps are based. This distinction between exploratory and
confirmatory studies (Kimmelman et al. 2014 and chapter “Resolving the Tension
Between Exploration and Confirmation in Preclinical Biomedical Research”) is a
determining factor in study design, but remains an underused concept in
nonclinical work.

Arguably the most serious consequence of insufficient planning is that nonclini-
cal studies are too often underpowered (Table 2 in Button et al. 2013) or are of
unknown power, when publications fail to reveal how sample sizes were chosen
(Carter et al. 2017). Despite its central role in the null hypothesis significance testing
framework, which remains the most used in nonclinical pharmacology, for many
scientists, statistical power is one of the least well-understood aspects of statistics.
This may be because it is generally explained using abstract mathematical terms, and
its role more extensively discussed in clinical research, or in psychology, than in
biology. However, recognizing that inadequately powered studies can lead to unre-
liable conclusions on the direction and magnitude of an effect in a sample of the
whole population is just as important in nonclinical pharmacology as it is in EBM.
Assay development is by definition exploratory in initial attempts; but when the
assay is going to be used routinely, sample sizes to achieve a desired statistical power
need to be determined. Unfortunately, this is not yet the norm in nonclinical
pharmacology, where decisions are often made on so-called converging evidence
from several underpowered studies with different endpoints or on a single published
study of unknown power, offering little confidence that the same effect(s) would be
seen in the whole population from which the sample was taken.
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As discussed above (see Sect. 2.5), randomization is essential to prevent selection
bias across all sectors of research. Randomization can be achieved even with limited
resources and applied in many nonclinical pharmacology studies regardless of their
purpose and type, without necessarily involving statistical expertise. The randomi-
zation procedure must however be part of the study design, and statistical evaluation
before a study is conducted can help determine which procedure is best suited.

2.7 Data Integrity, Reporting, and Sharing

Notwithstanding the existence of vast amounts of electronic storage space and
sophisticated software to ensure file integrity, retaining, and potentially sharing,
original datasets and protocols is not yet straightforward. Barriers to widespread data
sharing are slowly being overcome, but there remains a need for long-term funding,
and the ability to browse data long after the software used to generate or store them
has become obsolete.

In biopharma companies and CROs, it is customary to retain all original individ-
ual and transformed data, with information on how a study was performed, in
laboratory notebooks and annexes. Scientists working in industry are all aware
that the company owns the data; one does not lose or inadvertently misplace or
destroy the company’s property, and in audits, quality control procedures, prepara-
tion for regulatory filings, or patent litigation cases, to name a few, original data must
often be produced. This also applies to studies conducted by external collaborators.
For compounds that are tested in human trials (including compounds that reach the
market), all data and metadata must be safely stored and retrievable for 30 years after
the last administration in humans. It is thus common practice to keep the records
decades after they were generated (see item GRS023 in https://india-pharma.gsk.
com/media/733695/records-retention-policy-and-schedule.pdf). Such durations
exceed by far the life of the software used to generate or store the data and require
machine-readable formats. Paper laboratory notebooks are also stored for the dura-
tion; their contents are notoriously difficult to retrieve as time passes, and teams or
companies disperse. Electronic source data in FDA-regulated clinical investigations
are expected to be attributable, legible, contemporaneous, original, and accurate
(ALCOA). This expectation is also applied to nonregulated nonclinical data in many
biopharma companies and in nonclinical CROs. The recent FAIR (findable, accessi-
ble, interoperable, reusable) guiding principles for scientific data management and
stewardship (Wilkinson et al. 2016) are intended to facilitate data access and sharing
while maintaining confidentiality if needed. To this date, broadly sharing raw data
and protocols from biopharma research remains rare (but see Sect. 3.1).

Generally speaking, data generated in academia destined for publication are not
as strictly managed. Institutional policies (see examples of data retention policies:
Harvard, https://vpr.harvard.edu/files/ovpr-test/files/research_records_and_data_
retention_and_maintenance_guidance_rev_2017.pdf; MRC, https://mrc.ukri.org/
documents/pdf/retention-framework-for-research-data-and-records/) may state
that data should be retained for a minimum of 3 years after the end of a research
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project, a period of 7–10 years or more, or as long as specified by research funder,
patent law, legislative, and other regulatory requirements. Effective record-keeping
and retention is limited by funding and by the rapid turnover of the scientists
performing most of the experiments; a classic problem is the struggle to find the
data generated by the now long-gone postdoctoral associate. Access to original,
individual data can be requested by other scientists or required by journals and
funding agencies or, on rare occasions, for investigations of scientific misconduct.
Although academic data and metadata sharing is improving (Wallach et al. 2018),
with extended supplementary materials and checklists, preprint servers, data
repositories (Figshare, https://figshare.com; OSF, https://osf.io; PRIDE, https://
www.ebi.ac.uk/pride/archive), and protocol sharing platforms (https://experiments.
springernature.com; https://www.protocols.io), universal open access to data is yet
to be achieved.

In biopharma companies, there is an enormous amount of early discovery studies,
including but not limited to assay development and screening campaigns, with both
“positive” and “negative” data, that are not intended per se for publication, even
though many could be considered precompetitive. A relatively small proportion of
conducted studies is eventually published. However, for each compound entering
clinical development, all the results that are considered relevant are documented in
the nonclinical pharmacology study reports that support IND and CTA filings. A
summary of the data is included in the nonclinical overview of the application
dossiers and in the Investigator’s Brochure. From these documents it is often difficult
to assess the quality of the evidence, since they contain relatively little experimental
or study information (Wieschowski et al. 2018); study design features are more
likely to be found in the study reports, although there are no explicit guidelines for
these (Langhof et al. 2018). The study reports themselves are confidential documents
that are usually only disclosed to health authorities; they are intended to be factual
and include study plans and results, statistical plans and analyses, and
individual data.

In academia, publishing is the primary goal; publication standards and content are
set by guidelines from funders, institutions, partners, peer reviewers, and most
importantly by journals and editorial policies. In recent years, journal guidelines to
authors have increasingly focused on good reporting practices, implementing
recommendations from landmark publications and work shepherded by institutions
such as the NC3Rs with the ARRIVE guidelines (Kilkenny et al. 2010), and the NIH
(Landis et al. 2012), mirroring coordinated initiatives to improve clinical trial
reporting guidelines, such as the EQUATOR network (https://www.equator-net
work.org). Yet despite the impressive list of journals and institutions that have
officially endorsed the ARRIVE guidelines, meta-research shows that there is
much to be improved in terms of compliance (Jin et al. 2018; Hair et al. 2019).
Moreover, there is no obligation to publish every single study performed or to report
all experiments of a study in peer-reviewed journals; an important amount, possibly
as much as 50%, remain unpublished (ter Riet et al. 2012).
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3 Overcoming Obstacles and Further Learning from
Principles of Evidence-Based Medicine

3.1 Working Together to Improve Nonclinical Data Reliability

Many conversations among researchers, basic and clinical, resemble the one
between Professor Benchie and Doctor Athena (Macleod 2015), in which Athena
concludes that they should be able to improve reliability and translatability, at least a
little, by learning from the strengths and weaknesses of their respective backgrounds.

Strictly following the EBM and GRADE rules would require that scientists
appraise all the available nonclinical evidence with relevance to the question being
asked. This should be the case when deciding whether to take a compound to the
clinic, but is unlikely to happen for other purposes. Scientists would nevertheless
benefit from a basic understanding of the methodology, strengths and weaknesses of
systematic review and meta-analysis. Meta-analyses are often performed in
collaborations, and a recent feasibility study using crowd-sourcing for clinical
study quality assessment suggests that this could be a way forward, since experts
and novices obtained the same results (Pianta et al. 2018). Combined with recently
developed and highly promising machine learning algorithms (Bannach-Brown et al.
2019), collaborative efforts could increase the pace and reduce human error in
systematic reviews and meta-analysis.

In recent years, private sector organizations, academic institutions, disease
foundations, patient associations, and government bodies have formed consortia to
tackle a wide variety of complex questions, in a precompetitive manner. Many of
these partnerships bring together basic and clinical researchers and also aim to share
experimental procedures and unpublished findings. Collective efforts have produced
consensus recommendations, based on the critical appraisal of published and unpub-
lished data, in fields such as stroke (Macleod et al. 2009) and pain (Knopp et al.
2015; Andrews et al. 2016). In IMI Europain (home page: www.imieuropain.org),
the group of scientists and clinicians working on improving and refining animal
models of chronic pain, addressing the clinical relevance of endpoints used in animal
models and methodologies to reduce experimental bias, held teleconference
meetings roughly 10 times a year over 5 years, which represents a substantial amount
of shared data and expertise. Leveraging this combined expertise and aiming to
develop a novel, non-evoked outcome measure of pain-related behavior in rodents,
IMI Europain partners from both academia and industry accomplished a multicenter
nonclinical study (Wodarski et al. 2016), in the spirit of a phase 3 multicenter clinical
trial. One of the important lessons learned during this study was that absolute
standardization should not be the goal, since circumstantial differences such as site
location cannot be erased, leading to pragmatic accommodations for local variations
in laboratory practice and procedures. An effort to uncover evidence-based drivers of
reliability in other subfields of neuroscience is ongoing in IMI EQIPD (home page:
https://quality-preclinical-data.eu), with the overarching goal of building broadly
applicable tools for managing nonclinical data quality. Discussions on emerging
pathways of neurodegenerative disease within the IMI neurodegeneration strategic
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governance group led to a single, collectively written article describing independent
attempts that failed to reproduce or extend the findings of a prominent publication
(Latta-Mahieu et al. 2018). A culture of collaboration is thus growing, and not only
in large consortia. Co-designing nonclinical studies is now the preferred practice in
bilateral partnerships or when studies are outsourced by biopharma companies to
nonclinical CROS or academic drug discovery centers.

3.2 Enhancing Capabilities, from Training to Open Access to Data

Research quality training should aim to provide the ability to recognize the different
forms of bias and how to minimize risks, covering the full scope of data reliability,
rather than solely focusing on compliance or on scientific integrity. In the private
sector, laboratory notebook compliance audits are routinely performed; checklists
are used to assess whether scientists have correctly entered information in laboratory
notebooks. When releasing individual audit results to scientists, these compliance
checklists or, in all sectors, the Nature Reporting Summary (https://www.nature.
com/documents/nr-reporting-summary.pdf) checklist can also be used as tools for
continuing training.

Initial and continuing training in statistics should be an absolute priority for all
biologists. Those who are privileged to work closely with biostatisticians should aim
to establish a common language, and a meaningful engagement of both parties from
the start, to be able to translate the scientific question to a statistical one and co-build
study designs, with the most stringent criteria for confirmatory studies.

Learning to read a paper and to critically appraise evidence and keeping in mind
that low-quality reporting can confound the appraisal and that even high-profile
publications may have shortcomings should also be part of training, continued in
journal clubs, and carried over to post-publication peer review (e.g., PubPeer, https://
pubpeer.com). Paying particular attention to the methods section and any supple-
mentary methods information, searching for sample size considerations, randomiza-
tion, and blinding, before interpreting data presented in figures, is an effective way to
remember that independent evaluation of the data, with its strengths and limitations,
is the core responsibility of scientists in all research endeavors.

The fact that many clinical trial findings remain unpublished is still a major
roadblock for EBM, which various organizations have been tackling in recent
years (see links in https://www.eupati.eu/clinical-development-and-trials/clinical-
study-results-publication-and-application). In biopharma companies, proprietary
nonclinical data include a considerable amount of study replicates, sometimes spread
over several years. Many attempts are also made to reproduce data reported in the
literature (Begley and Ellis 2012; Prinz et al. 2011; Djulbegovic and Guyatt 2017),
but most of these remain undisclosed. In recent years, several independent groups
have been instrumental in coordinating and publishing reproducibility studies, such
as the Reproducibility Initiative collaboration between Science Exchange, PLOS,
figshare, and Mendeley (http://validation.scienceexchange.com/#/reproducibility-ini
tiative), the Center for Open Science (The Reproducibility Project, a collaborative
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effort by the Center for Open Science: https://cos.io), and a unique nonprofit-driven
initiative in amyotrophic lateral sclerosis (Scott et al. 2008). In sectors of the
biomedical ecosystem where the focus is more on exploring new ideas, generating
and testing hypotheses, or confirming and extending a team’s own work rather than
replicating that of others, a substantial amount of work, possibly as much as 50% (ter
Riet et al. 2012), remains unpublished. Thus, in the nonclinical space, the obstacles
to widespread open access to data have yet to be overcome.

4 Conclusion and Perspectives

Although the term evidence-based medicine was first introduced almost 30 years
ago, building upon efforts over several decades to strengthen a data-driven practice
of medicine, there are still misconceptions and resistance to the approach, as well as
challenges to its practical implementation, despite a number of striking illustrations
of its impact (Djulbegovic and Guyatt 2017). Adapting the conceptual toolbox of
EBM and using it to optimize nonclinical research practices and decision-making
will likely also require time, and most importantly, strong commitment and well-
targeted, well-focused advocacy from all stakeholders. Several lessons from EBM
particularly deserve the attention of nonclinical scientists, such as the importance of
framing a question, critically appraising prior evidence, carefully designing a study
that addresses that question, and assessing the quality of the data before moving to
the next step (Fig. 1).

In medicine, reviewing the evidence aims to inform the decision about how to
treat a patient; in science, the decision can be about whether or not to pursue a
project, about which experiment to do next, which assay to develop, whether the
work is sufficient for publication, or whether the aggregated evidence supports
testing a compound in humans. In all sectors, a universal framework, with custom-
izable tools, such as those available in the clinical setting, higher standards in data,
and metadata management practices and sharing would help scientists assess and
generate more reliable data.

Adapting EBM principles to nonclinical research need not undermine the free-
dom to explore. Assessing the quality of prior work should not paralyze scientists or
prevent them from thinking out of the box, and the effective implementation of
measures, such as blinding and randomization, to reduce bias should not produce a
bias against novelty. Exploratory studies aiming to generate new hypotheses may
follow less strict designs and statistical approaches, but when they are followed by
confirmatory studies, a novel body of evidence and knowledge is formed, which can
propel innovation through significance and impact. Indeed, “Innovative research
projects are expected to generate data that is reproducible and provides a foundation
for future studies” (http://grants.nih.gov/reproducibility/faqs.htm#4831). In other
words, to be truly innovative, novel findings should endure beyond the initial
excitement they create. If publications were collaboratively appraised using an
adaptation of GRADE ratings, journals could develop novel impact metrics to reflect
these ratings and the endurance of the findings.
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In drug discovery and development, the significance and reliability, or lack
thereof, of experimental data have immediate consequences. Biopharma companies
need to be able to rely on the data to determine a course of action in a research
project, to shape the future of a drug discovery program, and to extrapolate doses that
will be administered to humans. There is thus both a financial interest and an ethical
imperative, and from the patient’s perspective, an absolute requirement, to base a
decision to test a compound in humans on reliable data. When the overarching goal
of nonclinical pharmacology research is to bring a compound to the clinic,
transitioning to an evidence-based model, using and generating evidence rated in
the upper levels of the pyramid to inform decisions, would benefit discovery, and at
the very least, reduce the amount of wasted experiments.

Even with high quality of evidence and better informed decision-making, it
remains to be seen whether the approaches discussed here will effectively decrease
the attrition rate of drug candidates and lead to more success in translating findings
from nonclinical to clinical studies. There are many reasons for “failure,” and only
some are related to scientific rigor, reproducibility, and robustness. However, prog-
ress in understanding disease mechanisms and target tractability (https://docs.
targetvalidation.org/faq/what-is-target-tractability) is linked to the ability to design
experiments and clinical trials that provide reliable information. In the near future, as
solutions for enhancing data access emerge and stringent reporting standards become
mandatory, scientists of all sectors should be encouraged to adapt and adopt EBM
principles, to better enable reliable data-driven decisions.

Evidence-
based 

medicine

Evaluate

Ask

CollectAssess/rank

Implement 

Evaluate global outcome and process to 
learn from experience
Share lessons learned

Store, catalog and secure all information  

Ask a research question 
and list which nonclinical 
study types and designs 

could help provide answers

Collect relevant 
literature and aggregate 
data from pilot studies; 

consider all available 
evidence

Assess and rank quality of 
prior evidence as reported; 

determine overall 
reliability for decision-

making

Decide on next steps, 
based on assessment; 

e.g., design study, 
including statistical plan 

Implement decisions; e.g., 
generate new data, 

reproduce prior study,  move 
to next question or next stage

Fig. 1 Adapting the five evidence-based medicine steps to nonclinical pharmacology research
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Abstract
Preclinical studies using animals to study the potential of a therapeutic drug or
strategy are important steps before translation to clinical trials. However, evi-
dence has shown that poor quality in the design and conduct of these studies has
not only impeded clinical translation but also led to significant waste of valuable
research resources. It is clear that experimental biases are related to the poor
quality seen with preclinical studies. In this chapter, we will focus on hypothesis
testing type of preclinical studies and explain general concepts and principles in
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relation to the design of in vivo experiments, provide definitions of experimental
biases and how to avoid them, and discuss major sources contributing to experi-
mental biases and how to mitigate these sources. We will also explore the
differences between confirmatory and exploratory studies, and discuss available
guidelines on preclinical studies and how to use them. This chapter, together with
relevant information in other chapters in the handbook, provides a powerful tool
to enhance scientific rigour for preclinical studies without restricting creativity.

Keywords
Experimental bias · Hypothesis generating · Hypothesis testing · In vivo studies ·
Preclinical research

This chapter will give an overview of some generic concepts pertinent to the design
of preclinical research. The emphasis is on the requirements of in vivo experiments
which use experimental animals to discover and validate new clinical therapeutic
approaches. However, these general principles are, by and large, generically relevant
to all areas of preclinical research. The overarching requirement should be that
preclinical research should only be conducted to answer an important question for
which a robust scrutiny of the available evidence demonstrates that the answer is
not already known. Furthermore, such experiments must be designed, conducted,
analysed and reported to the highest levels of rigour and transparency. Assessments
of research outputs should focus more on these factors and less on any apparent
“novelty”.

1 An Overview

Broadly, preclinical research can be classified into two distinct categories depending
on the aim and purpose of the experiment, namely, “hypothesis generating” (explor-
atory) and “hypothesis testing” (confirmatory) research (Fig. 1). Hypothesis
generating studies are often scientifically-informed, curiosity and intuition-driven
explorations which may generate testable theories regarding the pathophysiology of
disease and potential drug targets. The freedom of researchers to explore such
innovative ideas is the lifeblood of preclinical science and should not be stifled by
excessive constraints in terms of experimental design and conduct. Nevertheless, in
order to subsequently assess the veracity of hypotheses generated in this way, and
certainly to justify clinical development of a therapeutic target, hypothesis testing
studies which seek to show reproducible intervention effects in relevant animal
models must be designed, conducted, analysed and reported to the highest possible
levels of rigour and transparency. This will also contribute to reducing research
“waste” (Ioannidis et al. 2014; Macleod et al. 2014). Chapter “Resolving the Tension
Between Exploration and Confirmation in Preclinical Biomedical Research” of the
handbook will deal with exploratory and confirmatory studies in details. This chapter
will only focus on general design principles for hypothesis testing studies. We will
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address the issue of design principles for hypothesis-generating studies at the end of
this chapter. We advise that when researchers design and conduct hypothesis testing
in vivo studies, they should conform to the general principles for the major domains
that are outlined in Sect. 4 of the chapter and incorporate these principles into a
protocol that can be registered and published. The purpose of using these principles
is to enhance scientific rigour without restricting creativity. It is advisable that
sometimes there can be exploratory elements within the same hypothesis testing
studies; therefore, extra care in terms of applying these principles to reduce experi-
mental biases would be needed before the start of the studies. This chapter will not
cover reporting, which will be detailed in chapters “Minimum Information and
Quality Standards for Conducting, Reporting, and Organizing In Vitro Research”,
“Minimum Information in In Vivo Research”, and “Quality Governance in Biomed-
ical Research” of the handbook.

We would recommend that researchers who conduct hypothesis testing in vivo
studies should prepare clear protocols, which include a statistical analysis plan,
detailing how they are going to set up measures to address the major domains of
experimental biases before the experiments start. Ideally, these protocols should be
preregistered and/or published, so that the methods which will be used to reduce the
impact of bias are documented in an a priori fashion. The process of peer review of a
protocol prior to initiating experiments of course is a valuable opportunity for
refinement and improvement. Registering protocols encourages rigour and transpar-
ency, even if the protocol is not peer-reviewed. Some journals are open to
submissions of these types of protocols, such as BMJ Open Science, and many
journals offer the Registered Reports format. In addition, there are online resources

Fig. 1 Comparison of exploratory (hypothesis generating) and confirmatory (hypothesis testing)
preclinical studies. Descriptive statistics describes data and provides descriptions of the population,
using numerical calculations, graphs, and tables. In contrast, inferential statistics predicts and infers
about a population using a sample of data from the population, therefore one can take data from
samples and make generalisation about a population
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that allow researchers to preregister their experimental protocols, such as preclinical.
eu and osf.io/registries.

2 General Scientific Methods for Designing In Vivo
Experiments

Designing an in vivo experiment involves taking a number of decisions on different
aspects of the experimental plan. Typically, a comparative experiment can be broken
into several component parts.

2.1 Hypotheses and Effect Size

The objective is usually to test a hypothesis. On some occasions, two hypotheses
may be postulated: the null hypothesis and the alternative hypothesis. The alternative
hypothesis refers to the presumption that the experimental manipulation has an effect
on the response measured; the null hypothesis is the hypothesis of no change, or no
effect. In a statistical test, the p-value reports the probability of observing an effect as
large or larger than the one being observed if the null hypothesis was true; the
smaller the p-value, the least likely it is that the null hypothesis is true. The null
hypothesis cannot be accepted or proven true. This also defines the effect of interest,
i.e. the outcome that will be measured to test the hypothesis. The minimum effect
size is the smallest effect the researcher designs the experiment to be able to detect
and should be declared in the protocol; it is set up as the minimum difference which
would be of biological relevance. The effect size is then used in the sample size
calculation to ensure that the experiment is powered to detect only meaningful
effects and does not generate statistically significant results that are not biologically
relevant. In many cases, it will be hard to determine the minimum difference of
biological relevance as for early stage experiments it might be completely unknown,
or translatability between clinical relevance and experimental detection thresholds
will be complex. There is no simple and easy answer to this question, but in general,
a minimum effect size should be set so one can assume to have a beneficial effect for
individuals rather than large cohorts, the difference must be experimentally testable
and reasonable to achieve, and should have a rationale for translation into patients in
the long run.

2.2 Groups, Experimental Unit and Sample Size

In comparative experiments, animals are split into groups, and each group is
subjected to different interventions, such as a drug or vehicle injection, or a surgical
procedure. The sample size is the number of experimental units per group;
identifying the experimental unit underpins the reliability of the experiment, but it
is often incorrectly identified (Lazic et al. 2018). The experimental unit is the entity
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subjected to an intervention independently of all other units; it must be possible to
assign any two experimental units to different comparison groups. For example, if
the treatment is applied to individual mice by injection, the experimental unit may be
the animal, in which case the number of experimental units per group and the
number of animals per group is the same. However, if there is any contamination
between mice within a cage, the treatment given to one mouse might influence other
mice in that cage, and it would be more appropriate to subject all mice in one cage to
the same treatment and treat the cage as the experimental unit. In another example, if
the treatment is added to the water in a fish tank, two fish in the same tank cannot
receive different treatments; thus the experimental unit is the tank, and the sample
size is the number of tanks per group. Once identified, experimental units are
allocated to the different comparison groups of the desired sample size; this is
done using an appropriate method of randomisation to prevent selection bias (see
Sect. 3). Each comparison group will be subjected to different interventions, at least
one of which will be a control. The purpose of the control group is to allow the
researcher to investigate the effect of a treatment and distinguish it from other
confounding experimental effects. It is therefore crucial that any control group is
treated exactly in the same way as the other comparison groups. Types of control
group to consider include negative control, vehicle control, positive control, sham
control, comparative control and naïve control (Bate and Clark 2014).

2.3 Measurements and Outcome Measures

Measurements are taken to assess the results; these are recorded as outcome
measures (also known as dependent variable). A number of outcome measures can
be recorded in a single experiment, for example, if burrowing behaviour is measured,
the outcome measure might be the weight of gravel displaced, or if neuronal density
is measured from histological brain slides, the outcome measure might be the neuron
count. The primary outcome measure should be identified in the planning stage of
the experiment and stated in the protocol; it is the outcome of greatest importance,
which will answer the main experimental question. The number of animals in the
experiment is determined by the power needed to detect a difference in the primary
outcome measure. A hypothesis testing experiment may also include additional
outcome measures, i.e. secondary outcome measures, which can be used to generate
hypotheses for follow-up experiments. Secondary outcome measures cannot be used
to draw conclusions about the experiment if the experiment was not powered to
detect a minimum difference for these outcome measures.

For the purpose of the statistical analysis, outcome measures fall into two broad
categories: continuous or categorical. Continuous measures are sometimes referred
to as quantitative data and are measured on a numerical scale. Continuous measures
include truly continuous data but also discrete data. Examples of true continuous
data include bodyweight, body temperature, blood/CSF concentration or time to
event, while examples of discrete data include litter size, number of correct response
or clinical score. Categorical responses are measured on a nonnumerical scale; they
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can be ordinal (e.g. severity score, mild/moderate/severe), nominal (e.g. behavioural
response, left/middle/right arm maze) or binary (e.g. disease state, present/absent).
Continuous responses may take longer to measure, but they contain more informa-
tion. If possible, it is preferable to measure a continuous rather than categorical
response because continuous data can be analysed using the parametric analyses,
which have higher power; this reduces the sample size needed (Bate and Clark
2014).

2.4 Independent Variables and Analysis

There are many ways to analyse data from in vivo experiments; the first step in
devising the analysis plan is to identify the independent variables. There can be two
broad types: independent variables of interest which the researcher specifically
manipulates to test the hypothesis, for example, a drug with different doses, and
nuisance variables, which are other sources of variability that may impact on the
outcome measure, but are not of direct interest to the researcher. Examples of
nuisance variables could be the day of the experiment, if animals used on different
days, or baseline body weight or locomotor activity. Every experiment has nuisance
variables. Identifying them at the protocol stage and accounting for them in the
design and the analysis, for example, as blocking factors, or co-variables, increase
the sensitivity of the experiment to detect changes induced by the independent
variable(s) of interest. The analysis plan should be established before the experiment
starts and any data is collected; it should also be included in the protocol. Additional
analyses can be performed on the data, but if an analysis was not planned before the
data was collected, it should be clearly reported as a post hoc or exploratory analysis.
Exploratory analyses are at greater risk of yielding false positive results.

3 Experimental Biases: Definitions and Methods
to Reduce Them

For any researcher who intends to carry out preclinical in vivo studies, it is important
to understand what experimental biases are. First, we need to know the definition
of bias. It is the inadequacies in the design, conduct, analysis or reporting of an
experiment that cause systematic distortion of the estimated intervention effect
away from the “truth” (Altman et al. 2001; van der Worp et al. 2010), and it will
significantly confound in vivo studies and reduce their internal validity. Sources of
bias are multiple and in many cases context dependant. In this overview chapter, it is
not possible to give an exhaustive list of potential sources of bias, and it behoves the
researcher to systematically identify all potential significant sources of bias for the
particular experiment being in planned and to design appropriate mitigation tactics
into the protocol. Major known types of biases include selection bias, performance
bias, detection bias, and attrition bias. Table 1 gives the definition of each type of
bias and describe the methods to reduce them.
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Table 1 Bias definition and bias-reducing methods (Lazic et al. 2018)

Name of bias Definition of bias Methods to reduce bias

Selection
bias

Refers to the biased allocation of
animals to different treatment groups,
which could happen at the beginning
of an animal study or at a stage where
reassigning animals to different
treatment groups is needed following
an initial surgical procedure or
treatment. Selection bias results in
systematic differences in baseline
characteristics between treatment
groups (Higgins et al. 2011)

To avoid systematic differences
between animals allocated to different
treatment groups, one shall use a valid
randomisation method, e.g. a
randomisation software or even a
simple method such as picking a
number from a hat (Baastrup et al.
2010; Huang et al. 2013; Saghaei
2004). Detail for randomisation is
covered in chapter “Blinding and
Randomization”. Note that it is also
necessary to conceal the allocation
sequence from experimenters who
will assign animals to treatment
groups until the time of assignment

Performance
bias

Related to the systematic differences
in the care that is provided between
different treatment groups or being
exposed to factors other than the
treatment that could influence the
performance of the animals (Higgins
et al. 2011; O’Connor and Sargeant
2014; van der Worp et al. 2010).
Performance bias is a result of animals
being managed differently due to,
e.g. housing conditions, diet, group
sizes per cage, location in the animal
house, and experimenters who
provide the care to animals are not
blinded to treatment groups

One can avoid performance bias by
improving the study design,
e.g. applying the same housing, diet,
location conditions to all the animals
and by ensuring proper blinding of the
experimenters to treatment groups,
which keeps the experimenters who
perform the experiment, collect data
and access outcomes unaware of
treatment allocation. Detail for
blinding is covered in chapter
“Blinding and Randomization”

Detection
bias

Defined as the systematic distortion of
the results of a study that occurs when
the experimenter assessing
behavioural outcome measures has the
knowledge of treatment assignment to
groups (van der Worp et al. 2010). In
this circumstance, experimenters
measuring the outcomes may
introduce differential measurement of
the outcomes rather than the treatment
itself due to inadvertent expectation

The only way to avoid detection bias
is a complete blinding of the
experimenters, including those who
analyse the data, so that they are not
aware which animal(s) belong to
which treatment group(s). The
protocol should define at what stage
the blinding codes will be broken
(preferably only after data analysis has
been completed). Detail for blinding is
covered in chapter “Blinding and
Randomization”

Attrition bias Is the unequal occurrence and
handling of deviations from protocol
and loss to follow-up between
treatment groups (van der Worp et al.
2010). This bias can occur when
animals die or are removed from the
study due to adverse effects of the
treatment or pre-set criteria for

Experimenters should report attrition
information for each experimental
group and also include outcomes that
will not be affected by attrition. It is
also advisable to consult a statistician
to minimise the impact of attrition bias
using some statistical approaches such
as intention-to-treat analysis by

(continued)
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Researchers who conduct hypothesis testing in vivo animal work should under-
stand the importance of limiting the impact of experimental biases in the design,
conduct, analysis and reporting of in vivo experiments. Experimental biases can
cause significant weakness in the design, conduct and analysis of in vivo animal
studies, which can produce misleading results and waste valuable resources. In
biomedical research, many effects of interventions are fairly small, and small effects
therefore are difficult to distinguish from experimental biases (Ioannidis et al. 2014).
Evidence (1960–2012 from PubMed) shows that adequate steps to reduce biases,
e.g. blinded assessment of outcome and randomisation, have not been taken in more
than 20% and 50% of biomedical studies, respectively, leading to inflated estimates
of effectiveness, e.g. in the fields of preclinical stroke, multiple sclerosis,
Parkinson’s disease, bone cancer pain and myocardial infarction research (Currie
et al. 2013; Macleod et al. 2008; Rooke et al. 2011; Sena et al. 2007; van Hout et al.
2016; Vesterinen et al. 2010) and consequently significant research waste (Ioannidis
et al. 2014; Macleod et al. 2014, 2015). Therefore, it is imperative that biomedical
researchers should spend efforts on improvements in the quality of their studies
using the methods described in this chapter to reduce experimental biases which will
lead to increased effect-to-bias ratio.

However, it is worth pointing out that the notion that experimental biases could
significantly impact on in vivo animal studies is often assumed because they are
believed to be important in clinical research. Therefore, such an assumption may be
flawed, as the body of evidence showing the importance of bias-reducing methods
such as randomisation, blinding, etc. for animal studies is still limited and most of the
evidence is indirect. Furthermore, there may also be sources of bias which impact on
preclinical studies which are currently unknown. Thus, systematic review and meta-
analysis of in vivo studies have shown that papers that do not report bias-reducing
methods report larger effect sizes (Vesterinen et al. 2010). However, these studies
are based on reported data alone, and therefore there might be a difference between
what researchers do and what they report in their publications (Reichlin et al. 2016).
Reporting of the precise details of bias reduction methods is often scanty, and
therefore accurate assessment of the precise method and rigour of such procedures
is challenging. Moreover, those papers that do not report one bias-reducing method,
e.g. randomisation, also tend to not report other bias-reducing methods, e.g. blinding
and sample size calculation, suggesting that there could be interactions between
these methods.

Table 1 (continued)

Name of bias Definition of bias Methods to reduce bias

removal before observing the
outcomes; therefore, the outcomes are
not observed for all animals, causing
inadvertent bias (O’Connor and
Sargeant 2014)

imputing the missing data. Excluding
“outliers” from analysis should be
only undertaken as an extremely
measure and should only be done to
pre-stated criteria. Detail for statistics
is covered in chapter “Blinding and
Randomization”
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4 Experimental Biases: Major Domains and General
Principles

In this section, we will describe the major domains, in other words, sources that
could contribute to experimental bias if not carefully considered and if mitigating
tactics are not included in the design of hypothesis testing experiments before data
collection starts. These include sample size estimation, randomisation, allocation
concealment, blinding, primary and secondary outcome measures and inclusion/
exclusion criteria. General descriptions for these domains (Macleod et al. 2009; Rice
et al. 2008; Rice 2010; van der Worp et al. 2010) are shown in the following Table 2.
It is important to note that these domains are key things to be included in a protocol
as mentioned in Sect. 1.

Table 2 General descriptions for the major domains that contribute to experimental biases

Major domains General descriptions

Sample size estimation The sample size refers to the number of experimental units (e.g. a
single animal, a cage of animals) per group. In hypothesis testing
experiments, it should be determined with a power calculation.
Studies that are not appropriately powered are unethical, and both
underpowered and overpowered studies lead to a waste of
animals. The former because they produce unreliable results and
the latter because they use more animals than necessary

Randomisation Refers to the steps to reduce systematic differences between
comparison groups. Failure to conduct randomisation leads to
selection bias

Allocation concealment Refers to the practice of concealment of the group or treatment
assignment (i.e. the allocation) and its sequence of each
experimental unit from the experimenter until the time of
assignment. Failure to conceal allocation will lead to selection
bias. This should not be confused with randomisation

Blinding Refers to the practice of preventing the experimenter who
administer treatments, take care of the animals, assess the
responses and analyse data from knowing the test condition.
Failure of appropriate blinding leads to selection, performance
and detection biases

Primary and secondary
outcome measures

Primary outcome measure refers to the outcome measure of most
interest, and it is related to the efficacy of an intervention that has
the greatest importance for a given study. Secondary outcome
measure refers to the outcome measure that is related to
intervention efficacy but with less importance than the primary
outcome measure and is used to evaluate additional intervention
effects. It is important to declare what intervention effects are in
the study protocol

Inclusion/exclusion criteria Refers to criteria by which animals will be included or excluded
in a given study, e.g. due to abnormal baselines or not reaching
the required change in thresholds after designed experimental
insult
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General principles to reduce experimental bias in each of the above-mentioned
domains (Andrews et al. 2016; Knopp et al. 2015) are outlined in the following
Table 3.

Table 3 General principles to prevent experimental biases in hypothesis testing in vivo studies

Major domains General principles

Sample size estimation A power calculation (desired power of at least 0.8, and
alpha ¼ 0.05) to estimate the experimental group size should be
carried out before any hypothesis testing study using pilot data or
those relevant data from the literature. This could be done by
using a statistical software. Detail on this can be found in chapter
“A Reckless Guide to P-Values: Local Evidence, Global Errors”

Randomisation There are different methods available to randomly allocate
animals to experimental groups such as computer-generated
randomisation. One should always consider to use the most
robust, appropriate and available method for randomisation.
Detail on this can be found in chapter “Blinding and
Randomization”

Allocation concealment Methods should be used to conceal the implementation of the
random allocation sequence (e.g. numbered cages) until
interventions are assigned, so that the sequence will not be known
or predictable in advance by the experimenters involved in
allocating animals to the treatment groups

Blinding Blinding procedures should be carried out, so that the treatment
identity should not be disclosed until after the outcome
assessments have been finished for all animals and the primary
analysis have been completed. In case that one experimenter
conducts the whole study, any additional steps should be taken to
preserve the blinding. Detail on this can be found in chapter
“Blinding and Randomization”

Primary and secondary
outcome measures

Experimenters should decide the outcome of great importance
regarding the treatment efficacy before any study starts as the
primary outcome measure. This is also usually used in the sample
size estimation. Primary outcome measure cannot be changed
once the study starts and when the results are known.
Experimenters should also include secondary outcome measures
relating to additional effects of treatments; these may be used for
new hypothesis generating

Inclusion/exclusion criteria Experimenters should set up the exact criteria which will include
and exclude animals from their studies. Every animal should be
accounted for, except under these criteria. They should be
determined appropriately according to the study nature before the
studies commence. Once determined, they cannot be changed
during the course of investigation
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5 Existing Guidelines and How to Use Them

There are resources to assist investigators in designing rigorous protocols and
identify sources of bias. Cross-referencing to experimental reporting guidelines
and checklists (e.g. ARRIVE (NC3Rs 2018a), the NIH guidelines (NIH 2018a)
and the Nature reporting of animal studies checklist (Nature 2013)) can be informa-
tive and helpful when planning an experimental protocol. However, it is important to
bear in mind that these are primarily designed for reporting purposes and are not
specifically designed for use in assisting with experimental design. There are more
comprehensive planning guidelines specifically aiming at early experimental design
stage. Henderson et al. identified 26 guidelines for in vivo experiments in animals in
2012 (Henderson et al. 2013) (and a few more have been published since, like
PREPARE (Smith et al. 2018), developed by the NORECEPA (Norway’s National
Consensus Platform for the advancement of the 3Rs), and PPRECISE for the field of
pain research (Andrews et al. 2016)). Most of them have been developed for a
specific research field but carry ideas and principles that can be transferred to all
forms of in vivo experiments. Notable are, for example, the very detailed Lambeth
Conventions (Curtis et al. 2013) (developed for cardiac arrhythmia research), from
Alzheimer’s research recommendations by Shineman et al. (2011) and generally
applicable call by Landis et al. (2012).

The authors of many of these guidelines state that their list might need adaption to
the specific experiment. This is pointing out the general shortcoming that a fixed-
item list can hardly foresee and account for any possible experimental situation and a
blind ticking of boxes ticking of boxes is unlikely to improve experimental design.
Such guidelines rather serve an educational purpose of making researchers aware of
possible pitfalls and biases before the experimental conduct.

Two examples for a more adaptive and reactive way to serve a similar purpose
should be stated: the NIH pages on rigour and reproducibility (NIH 2018b) provide
in-depth information and collect important publications and workshop updates on
these topics and have a funding scheme specifically for rigour and reproducibility.
Second, using the Experimental Design Assistant (EDA) (NC3Rs 2018b; Percie du
Sert et al. 2017) developed by the UK’s National Centre for the 3Rs (NC3Rs), a free
to use online platform guiding researchers through experimental planning will give
researchers the opportunity to adopt guideline and rigour principles precisely to their
needs. The researcher creates a flow diagram of their experimental set-up grouped in
three domains: the experiment (general questions on hypotheses and aims, animals
used, animal strains, etc.), the practical steps (experimental conduct, assessment,
etc.) and the analysis stage (e.g. outcome measures, statistical methods, data
processing). Unlike a fixed checklist, the EDA checks the specific design as
presented by the experimenter within the tool using logic algorithms. The user is
then faced with the flaws the EDA identified and can adjust their design accordingly.
This process can go through multiple rounds, by that forming a dynamic feedback
loop educating the researcher and providing more nuanced assistance than a static
checklist can.

While this process, however valid, might take time, the following steps of the
EDA actively guide researchers through crucial and complex questions of the
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experiment, by suggesting fitting methods of statistical analyses of the experiment
and subsequently carrying out sample size calculations. The EDA can then also
generate a randomization sequence or compile a report of the planned experiment
that can, e.g. be part of a preregistration of the experimental protocol.

6 Exploratory and Confirmatory Research

It is necessary to understand that there are in general two types of preclinical
research, namely, exploratory and confirmatory research, respectively. Figure 1
shows that exploratory studies mainly aim to produce theories regarding the patho-
physiology of disease (hypothesis generating), while confirmatory studies seek to
reproduce exploratory findings as clearly defined intervention effects in relevant
animal models (hypothesis testing). The next chapter will deal with exploratory and
confirmatory studies in details. Similar standards of rigour are advisable for both
forms of studies; this may be achieved by conforming to the general principles for
the major domains that are outlined in Table 2 and incorporating these principles into
a protocol that can be registered and published. It is important to note that both
exploratory and confirmatory research can be closely linked: sometimes there can be
exploratory and confirmatory components within the same studies. For example, a
newly generated knockout mouse model is used to examine the effect of knockout on
one specific phenotype (hypothesis testing – confirmatory) but may also describe a
variety of other phenotypic characteristics as well (hypothesis generating – explor-
atory). Therefore, extra care in terms of applying these principles to reduce experi-
mental bias would be needed before the commence of the studies. It also worth
noting that sometimes it might not be compulsory or necessary to use some of the
principles during exploratory studies such as sample size estimation and blinding
which are albeit of highest importance in confirmatory research.

However, it is necessary to recognise how hypothesis confirming and hypothesis
generating research relate to each other: while confirmatory research can turn into
exploratory (e.g. if the findings are contrary to the hypothesis, this can lead to a new
hypothesis that can be tested in a separate experiment), under no circumstances
exploratory findings should be disseminated as the result of hypothesis confirming
research by fitting a hypothesis to your results, i.e. to your p-values (often called
HARKing ¼ hypothesising after results are known or p-hacking ¼ sifting through a
multitude of p-values to find one below 0.05).

In conclusion, this chapter provides general concepts and principles that are
important for the design and conduct of preclinical in vivo experiments, including
experimental biases and how to reduce these biases in order to achieve the highest
levels of rigour for hypothesis generating research using animals. The chapter should
be used in conjunction with other relevant chapters in the handbook such as chapters
“Blinding and Randomization”, “Minimum Information and Quality Standards for
Conducting, Reporting, and Organizing In Vitro Research”, “Minimum Information
in In Vivo Research”, “A Reckless Guide to P-Values: Local Evidence, Global
Errors”, and “Quality Governance in Biomedical Research”.
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Abstract
Confirmation through competent replication is a founding principle of modern
science. However, biomedical researchers are rewarded for innovation, and not
for confirmation, and confirmatory research is often stigmatized as unoriginal and
as a consequence faces barriers to publication. As a result, the current biomedical
literature is dominated by exploration, which to complicate matters further is
often disguised as confirmation. Only recently scientists and the public have
begun to realize that high-profile research results in biomedicine can often not
be replicated. Consequently, confirmation has become central stage in the quest to
safeguard the robustness of research findings. Research which is pushing the
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boundaries of or challenges what is currently known must necessarily result in a
plethora of false positive results. Thus, since discovery, the driving force of
scientific progress, is unavoidably linked to high false positive rates and cannot
support confirmatory inference, dedicated confirmatory investigation is needed
for pivotal results. In this chapter I will argue that the tension between the two
modes of research, exploration and confirmation, can be resolved if we
conceptually and practically separate them. I will discuss the idiosyncrasies of
exploratory and confirmatory studies, with a focus on the specific features of their
design, analysis, and interpretation.

Keywords
False negative · False positive · Preclinical randomized controlled trial ·
Replication · Reproducibility · Statistics

Science, the endless frontier (V. Bush)

To boldly go where no man has gone before (G. Roddenberry)

Non-reproducible single occurrences are of no significance to science (K. Popper)

1 Introduction

Scientists’ and the public’s view on science is based toward innovation, novelty, and
discovery. Discoveries, however, which represent single occurrences that cannot be
reproduced are of no significance to science (Popper 1935). Confirmation through
competent replication has therefore been a founding principle of modern science
since its origins in the renaissance. Most scientists are aware of the need to confirm
their own or other’s results and conclusions. Nevertheless, they are rewarded for
innovation, and not for confirmation. Confirmatory research is often stigmatized as
unoriginal and faces barriers to publication. As a result, the current biomedical
literature is dominated by exploration, which is often disguised as confirmation. In
fact, many published articles claim that they have discovered a phenomenon and
confirmed it with the same experiment, which is a logical impossibility: the same
data cannot be used to generate and test a hypothesis. In addition, exploratory results
are often garnished with far-reaching claims regarding the relevance of the observed
phenomenon for the future treatment or even cure of a disease. As the results of
exploration can only be tentative, such claims need to be founded on confirmed
results.
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2 Discrimination Between Exploration and Confirmation

Recently, scientists and the public have become concerned that research results often
cannot be replicated (Begley and Ellis 2012; Prinz et al. 2011; Baker 2016) and that
the translation of biomedical discovery to improved therapies for patients has a very
high attrition rate (Dirnagl 2016). Undoubtedly the so-called replication crisis and
the translational roadblock have complex roots, including importantly the sheer
complexity of the pathophysiology of most diseases and the fact that many of the
“low-hanging fruits” (e.g., antibiotics, antidiabetics, antihypertensives, treatments
for multiple sclerosis, Parkinson’s disease, and epilepsy, to name but a few) have
already been picked. Nevertheless, results which are confounded by biases and lack
statistical power must often be false (Ioannidis 2005) and hence resist confirmation. I
will argue that the two modes of research need to be separated and clinical translation
of preclinical evidence be based on confirmation (Kimmelman et al. 2014). Thus,
exploration and confirmation are equally important for the progress of biomedical
research: In exploratory investigation, researchers should aim at generating robust
pathophysiological theories of disease. In confirmatory investigation, researchers
should aim at demonstrating strong and reproducible treatment effects in relevant
animal models. In what follows I will explore what immediate and relevant
consequences this has for the design of experiments, their analysis, interpretation,
and publication.

3 Exploration Must Lead to a High Rate of False Positives

Research which is pushing the boundaries of or challenges what is currently known
must result in a plethora of false positive results. In fact, the more original initial
findings are, the less likely it is that they can subsequently be confirmed. This is the
simple and straightforward result of the fact that cutting edge or even paradigm
shifting (Kuhn 1962) research must operate with low base rates, that is, low prior
probabilities that the tested hypotheses are actually true. Or in other words, the more
mainstream and less novel research is, the likelier it is that it will find its hypotheses
to be true. This can easily be framed statistically, either frequentist or Bayesian. For
example, if research operates with a probability that 10% of its hypotheses are true,
which is a conservative estimate, and accepts type I errors at 5% (alpha-level) and
type II errors at 20% (i.e., 80% power), almost 40% of the times, it rejects the NULL
hypothesis (i.e., finds a statistically significant result), while the NULL hypothesis is
actually true (false positive) (Colquhoun 2014). In other words, under those
conditions, which are actually unrealistic in preclinical medicine in which power is
often 50% and less (Button et al. 2013; Dirnagl 2006), the positive predictive value
(PPV) of results is much worse than the type I error level. This has grave
consequences, in particular as many researchers confuse PPV and significance
level, nurturing their delusion that they are operating at a satisfactory level of
wrongly accepting their hypothesis in only 5% of the cases. As a corollary, under
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those conditions true effect sizes will be overestimated by almost 50%. For a detailed
discussion and R-code to simulate different scenarios, see Colquhoun (2014).

4 The Garden of Forking Paths

The “Garden of Forking Paths” (1944) is a metaphor which the statisticians Gelman
and Loken (2013) have borrowed from Jorge Luis Borges’ (1899–1986) novel for
their criticism of experimental design, analysis, and interpretation of psychological
and biomedical research: In exploratory investigation, researchers trail on branched-
out paths through a garden of knowledge. And as poetic as this wandering might
seem, it withholds certain dangers. On his way through the labyrinth, the researcher
proceeds in an inductively deterministic manner. He (or she) does not at all notice the
many levels of freedom available to him. These will arise, for example, through an
alternative analysis (or interpretations) of the experiment, fluke false positive or false
negative results, the choice for an alternative antibody or mouse strain, or from the
choice of another article as the basis for further experiments and interpretations. The
labyrinth is of infinite size, and there is not only one way through it, but many, and
there are many exits. And since our researcher is proceeding exploratively, he has set
up no advance rules according to which he should carry out his analyses or plan
further experiments. So the many other possible results escape his notice, since he is
following a trail that he himself laid. In consequence, he overestimates the strength
of evidence that he generates. In particular, he overestimates what a significant
p-value means regarding his explorative wanderings. He should compare his results
with all the alternative analyses and interpretations that he could have carried out,
which is obviously an absurd suggestion. Indeed, in the Garden of Forking Paths, the
classic definition of statistical significance (e.g., p < 0.05) does not apply, for it
states that in the absence of an effect, the probability of bumping coincidentally into
a similarly extreme or even more extreme result is lower than 5%. You would have
to factor in all data and analyses that would be possible in the garden. Each of these
other paths could also have led to statistically significant results. Such a comparison
however is impossible in explorative research. If you nonetheless do generate
p-values, you will, according to Gelman and Loken, get a “machine for the produc-
tion and publication of random patterns.” A consequence of all this is that our
knowledge derived from exploration is less robust than the chain of statistically
significant results might have us believe and that the use of test statistics in explora-
tion is of little help or may even be superfluous if not even misleading.

At this point we must summarize that exploratory research, even if of the highest
quality and without selective use of data, p-hacking (collecting, selecting, or
analyzing data until statistically nonsignificant results become significant), or
HARKING (“hypothesizing after the results are known”), leads to at best tentative
results which provide the basis for further inquiry and confirmation. In this context it
is sobering that Ronald Fisher, a founding father of modern frequentist statistics,
considered results which are significant at the 5% level only “worth a second look”
(Nuzzo 2014). Today clinical trials may be based on such preclinical findings.
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5 Confirmation Must Weed Out the False Positives
of Exploration

Since discovery is unavoidably linked to high false positive rates and cannot support
confirmatory inference, dedicated confirmatory investigation is needed for pivotal
results. Results are pivotal and must be confirmed if they are the basis for further
investigation and thus drain resources, if they directly or indirectly might impact on
human health (e.g., by informing the design of future clinical development, includ-
ing trials in humans (Yarborough et al. 2018)), or if they are challenging accepted
evidence in a field. Exploration must be very sensitive, since it must be able to
faithfully capture rare but critical results (e.g., a cure for Alzheimer disease or
cancer); confirmation on the other hand must be highly specific, since further
research on and development of a false positive or non-robust finding is wasteful
and unethical (Al-Shahi Salman et al. 2014).

6 Exact Replication Does Not Equal Confirmation

Many experimentalists routinely replicate their own findings and only continue a line
of inquiry when the initial finding was replicated. This is laudable, but a few caveats
apply. For one, a replication study which exactly mimics the original study in terms
of its design may not be as informative as most researchers suspect. Counterintui-
tively, in an exact replication, with new samples but same sample size and treatment
groups, and assuming that the effect found in the original experiment with p < 0.05
(but p � 0.05) equals the true population effect, the probability of replication (being
the probability of getting again a significant result of the same or larger effect) is only
50% (Goodman 1992). In other words, the predictive value of an exact replication of
a true finding that was significant close to the 5% level is that of a coin toss!
Incidentally, this is the main reason why phase III clinical trials (which aim at
confirmation) have much larger sample sizes than phase II trials (which aim at
exploration). For further details on sample size calculation of replication studies,
see Simonsohn (2015).

A second problem of exact replications, in particular if performed by the same
group which has made the initial observation, is the problem of systematic errors.
One of the most embarrassing and illustrative examples for a botched replication in
the recent history of science relates to the discovery of neutrinos that travel faster
than the speed of light. The results of a large international experiment conducted by
physicists of high repute convulsed not only the field of physics; it shook the whole
world. Neutrinos had been produced by the particle accelerator at CERN in Geneva
and sent on a 730 km long trip. Their arrival was registered by a detector blasted
through thousands of meters of rock in the Dolomites. Unexpectedly, the neutrinos
arrived faster than would the photons travelling the same route. The experiment was
replicated several times, and the results remained significant with a p-value of less
than 3 � 10�7. In the weeks following the publication (the OPERA Collaboration
2011) and media excitement, the physicists found that the GPS used to measure
distances was not correctly synchronized and a cable was loose.
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7 Design, Analysis, and Interpretation of Exploratory vs
Confirmatory Studies

Thus, exploratory and confirmatory investigation necessitates different study
designs. Confirmation is not the simple replication of an exploratory experiment.
Exploratory and confirmatory investigation differs in many aspects. While explora-
tion may start without any hypothesis (“unbiased”), a proper hypothesis is the
obligatory starting point of any confirmation. Exploration investigates physiological
or pathophysiological mechanisms or aims at drug discovery. The tentative findings
of exploration, if relevant at all, need to be confirmed. Confirmation of the hypothe-
sis is the default primary endpoint of the confirmatory investigation, while secondary
endpoints may be explored. Both modes need to be of high internal validity, which
means that they need to effectively control biases (selection, detection, attrition, etc.)
through randomization, blinding, and prespecification of inclusion and exclusion
criteria. Of note, control of bias is as important in exploration as in confirmation. To
establish an experimental design and analysis plan before the onset of the study may
be useful in exploration but is a must in confirmation. Generalizability is of greater
importance in confirmation than in exploration, which therefore needs to be of high
external validity. Depending on the disease under study, this may include the use of
aged or comorbid animals. Statistical power is important in any type of experimental
study, as low power results not only in a high false negative rate but also increases
the number of false positive findings and leads to an overestimation of effect sizes
(Button et al. 2013). However, as exploration aims at finding what might work or is
“true,” type II error should be minimized and therefore statistical power high.
Conversely, as confirmation aims at weeding out the false positive, type I error
becomes a major concern. To make sure that statistical power is sufficient to detect
the targeted effect sizes, a priori sample size calculation is recommended in explor-
atory mode but obligatory in confirmation where achievable effect sizes and variance
can be estimated from previous exploratory evidence. Due to manifold constraints,
which include the fact that exploration (1) often collects many endpoints and hence
multiple group comparisons are made, (2) is usually underpowered, and (3) comes
with an almost unlimited degree of freedom of the researcher with respect to
selection of animal strains, biologicals, and selection of outcome parameters and
their analysis (“Garden of Forking Paths,” see above and (Gelman and Loken
2013)), statistical significance tests (like t-test, ANOVA, etc.) are of little use; the
focus in exploration should rather be on proper descriptive statistics, including
measures of variance and confidence intervals. Conversely, in confirmatory mode,
the prespecified analysis plan needs to describe the planned statistical significance
test. To prevent outcome switching and publication bias, in confirmatory studies the
hypothesis, experimental, and analysis plan should be preregistered (Nosek et al.
2018). Preregistration can be embargoed until the results of the study are published
and are therefore not detrimental to intellectual property claims. Table 1 gives a
tentative overview of some of the idiosyncrasies of exploratory and confirmatory
investigation.

76 U. Dirnagl



8 No Publication Without Confirmation?

Vis a vis the current masquerading of exploratory preclinical investigations as
confirmation of new mechanisms of disease or potential therapeutic breakthroughs,
Mogil and Macleod went as far as proposing a new form of publication for animal
studies of disease therapies or preventions, the “preclinical trial.” In it, researchers
besides presenting a novel mechanism of disease or therapeutic approach incorporate
an independent, statistically rigorous confirmation of the central hypothesis. Preclin-
ical trials would be more formal and rigorous than the typical preclinical testing
conducted in academic labs and would adopt many practices of a clinical trial (Mogil
and Macleod 2017).

It is uncertain whether scientists or journals will pick up this sensible proposal in
the near future. Meanwhile, another novel type of publication, at least in the
preclinical realm, is gaining traction: preregistration. When preregistering a study,
the researcher commits in advance to the hypothesis that will be tested, the study
design, as well as the analysis plan. This provides full transparency and prevents
HARKING, p-hacking, and many other potential barriers to the interpretability and
credibility of research findings. Preregistration is not limited to but ideally suited for
confirmatory studies of high quality. In fact, it may be argued that journals should
mandate preregistration when processing and publishing confirmatory studies.

9 Team Science and Preclinical Multicenter Trials

Confirmation lacks the allure of discovery and is usually more resource intense. It
requires higher sample sizes and benefits from multilab approaches which come with
considerable organizational overhead. Permission from regulatory authorities may

Table 1 Suggested differences between exploratory and confirmatory preclinical study designs

Exploratory Confirmatory

Establish pathophysiology, discover drugs, etc. +++ (+)

Hypothesis (+) +++

Blinding +++ +++

Randomization +++ +++

External validity (aging, comorbidities, etc.) � ++

Experimental and analysis plan established before study onset + +++

Primary endpoint � ++

Inclusion/exclusion criteria (prespecified) ++ +++

Preregistration (�) +++

Sample size calculation (+) +++

Test statistics + +++

Sensitivity (type II error): find what might work ++ +

Specificity (type I error): weed out false positives + +++

Modified with permission (Dirnagl 2016), for details see text
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be hard to obtain, as the repetition of animal experiments combined with upscaling
of sample sizes may antagonize the goal to reduce animal experimentation. Publica-
tion of confirmatory results faces bigger hurdles than those of novel results. Failure
to confirm a result may lead to tensions between the researchers who published the
initial finding and those who performed the unsuccessful confirmation. Potential
hidden moderators and context sensitivity of the finding dominate the resulting
discussion, as does blaming those who failed confirmation of incompetence. In
short, confirmatory research at present is not very attractive. This dire situation can
only be overcome if a dedicated funding stream supports team science and confir-
matory studies, and researchers are rewarded (and not stigmatized) for this funda-
mentally important scientific activity. It is equally important to educate the scientific
community that results from exploratory research even of the highest quality are
inherently tentative and that failure of competent replication of such results does not
disqualify their work but is rather an element of the normal progression of science.

It is promising that several international consortia have teamed up in efforts to
develop guidelines for international collaborative research in preclinical biomedicine
(MULTIPART 2016) or to demonstrate that confirmatory preclinical trials can be
conducted and published (Llovera et al. 2015) with a reasonable budget.

10 Resolving the Tension Between Exploration
and Confirmation

Science advances by exploration and confirmation (or refutation). The role of
exploration is currently overemphasized, which may be one reason of the current
“replication crisis” and the translational roadblock. In addition, generation of
postdictions is often mistaken with the testing of predictions (Nosek et al. 2018);
in other words exploration is confounded with exploration. We need to leverage the
complementary strengths of both modes of investigation. This will help to improve
the refinement of pathophysiological theories, as well as the generation of reliable
evidence in disease models for the efficacy of treatments in humans. Adopting a
two-pronged approach of exploration-confirmation requires that we shift the balance
which is currently biased toward exploration back to confirmation. Researchers need
to be trained in how to competently engage in high-quality exploration and confir-
mation. Funders and institutions need to establish mechanisms to fund and reward
confirmatory investigation.
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Abstract
Most, if not all, guidelines, recommendations, and other texts on Good Research
Practice emphasize the importance of blinding and randomization. There is,
however, very limited specific guidance on when and how to apply blinding
and randomization. This chapter aims to disambiguate these two terms by
discussing what they mean, why they are applied, and how to conduct the acts
of randomization and blinding. We discuss the use of blinding and randomization
as the means against existing and potential risks of bias rather than a mandatory
practice that is to be followed under all circumstances and at any cost. We argue
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that, in general, experiments should be blinded and randomized if (a) this is a
confirmatory research that has a major impact on decision-making and that cannot
be readily repeated (for ethical or resource-related reasons) and/or (b) no other
measures can be applied to protect against existing and potential risks of bias.

Keywords
Good Research Practice · Research rigor · Risks of bias

‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it means just what I
choose it to mean – neither more nor less.’

Lewis Carroll (1871)

Through the Looking-Glass, and What Alice Found There

1 Randomization and Blinding: Need for Disambiguation

In various fields of science, outcome of the experiments can be intentionally or
unintentionally distorted if potential sources of bias are not properly controlled.
There is a number of recognized risks of bias such as selection bias, performance
bias, detection bias, attrition bias, etc. (Hooijmans et al. 2014). Some sources of bias
can be efficiently controlled through research rigor measures such as randomization
and blinding.

Existing guidelines and recommendations assign a significant value to adequate
control over various factors that can bias the outcome of scientific experiments
(chapter “Guidelines and Initiatives for Good Research Practice”). Among internal
validity criteria, randomization and blinding are two commonly recognized bias-
reducing instruments that need to be considered when planning a study and are to be
reported when the study results are disclosed in a scientific publication.

For example, editorial policy of the Nature journals requires authors in the life
sciences field to submit a checklist along with the manuscripts to be reviewed. This
checklist has a list of items including questions on randomization and blinding. More
specifically, for randomization, the checklist is asking for the following information:
“If a method of randomization was used to determine how samples/animals were
allocated to experimental groups and processed, describe it.” Recent analysis by the
NPQIP Collaborative group indicated that only 11.2% of analyzed publications
disclosed which method of randomization was used to determine how samples or
animals were allocated to experimental groups (Macleod, The NPQIP Collaborative
Group 2017). Meanwhile, the proportion of studies mentioning randomization was
much higher – 64.2%. Do these numbers suggest that authors strongly motivated to
have their work published in a highly prestigious scientific journal ignore the
instructions? It is more likely that, for many scientists (authors, editors, reviewers),
a statement such as “subjects were randomly assigned to one of the N treatment
conditions” is considered to be sufficient to describe the randomization procedure.
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For the field of life sciences, and drug discovery in particular, the discussion of
sources of bias, their impact, and protective measures, to a large extent, follows the
examples from the clinical research (chapter “Learning from Principles of Evidence-
Based Medicine to Optimize Nonclinical Research Practices”). However, clinical
research is typically conducted by research teams that are larger than those involved
in basic and applied preclinical work. In the clinical research teams, there are
professionals (including statisticians) trained to design the experiments and apply
bias-reducing measures such as randomization and blinding. In contrast, preclinical
experiments are often designed, conducted, analyzed, and reported by scientists
lacking training or access to information and specialized resources necessary for
proper administration of bias-reducing measures.

As a result, researchers may design and apply procedures that reflect their
understanding of what randomization and blinding are. These may or may not be
the correct procedures. For example, driven by a good intention to randomize
4 different treatment conditions (A, B, C, and D) applied a group of 16 mice, a
scientist may design the experiment in the following way (Table 1).

The above example is a fairly common practice to conduct “randomization” in a
simple and convenient way. Another example of common practice is, upon animals’
arrival, to pick them haphazardly up from the supplier’s transport box and place into
two (or more) cages which then constitute the control and experimental group(s).
However, both methods of assigning subjects to experimental treatment conditions
violate the randomness principle (see below) and, therefore, should not be reported
as randomization.

Similarly, the use of blinding in experimental work typically cannot be described
solely by stating that “experimenters were blinded to the treatment conditions.” For
both randomization and blinding, it is essential to provide details on what exactly
was applied and how.

The purpose of this chapter is to disambiguate these two terms by discussing what
they mean, why they are applied, and how to conduct the acts of randomization and
blinding. We discuss the use of blinding and randomization as the means against
existing and potential risks of bias rather than a mandatory practice that is to be
followed under all circumstances and at any cost.

2 Randomization

Randomization can serve several purposes that need to be recognized individually as
one or more of them may become critical when considering study designs and
conditions exempt from the randomization recommendation.

Table 1 Example of an
allocation schedule that is a
pseudo-randomization

Group A Group B Group C Group D

Mouse 1 Mouse 2 Mouse 3 Mouse 4

Mouse 5 Mouse 6 Mouse 7 Mouse 8

Mouse 9 Mouse 10 Mouse 11 Mouse 12

Mouse 13 Mouse 14 Mouse 15 Mouse 16
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First, randomization permits the use of probability theory to express the
likelihood of chance as a source for the difference between outcomes. In other
words, randomization enables the application of statistical tests that are common
in biology and pharmacology research. For example, the central limit theorem states
that the sampling distribution of the mean of any independent, random variable will
be normal or close to normal, if the sample size is large enough. The central limit
theorem assumes that the data are sampled randomly and that the sample values are
independent of each other (i.e., occurrence of one event has no influence on the next
event). Usually, if we know that subjects or items were selected randomly, we can
assume that the independence assumption is met. If the study results are to be
subjected to conventional statistical analyses dependent on such assumptions, ade-
quate randomization method becomes a must.

Second, randomization helps to prevent a potential impact of the selection bias
due to differing baseline or confounding characteristics of the subjects. In other
words, randomization is expected to transform any systematic effects of an uncon-
trolled factor into a random, experimental noise. A random sample is one selected
without bias: therefore, the characteristics of the sample should not differ in any
systematic or consistent way from the population from which the sample was drawn.
But random sampling does not guarantee that a particular sample will be exactly
representative of a population. Some random samples will be more representative of
the population than others. Random sampling does ensure, however, that, with a
sufficiently large number of subjects, the sample becomes more representative of the
population.

There are characteristics of the subjects that can be readily assessed and con-
trolled (e.g., by using stratified randomization, see below). But there are certainly
characteristics that are not known and for which randomization is the only way to
control their potentially confounding influence. It should be noted, however, that the
impact of randomization can be limited when the sample size is low.1 This needs to
be kept in mind given that most nonclinical studies are conducted using small sample
sizes. Thus, when designing nonclinical studies, one should invest extra efforts into
analysis of possible confounding factors or characteristics in order to judge whether
or not experimental and control groups are similar before the start of the experiment.

Third, randomization interacts with other means to reduce risks of bias. Most
importantly, randomization is used together with blinding to conceal the allocation
sequence. Without an adequate randomization procedure, efforts to introduce and
maintain blinding may not always be fully successful.

2.1 Varieties of Randomization

There are several randomization methods that can be applied to study designs of
differing complexities. The tools used to apply these methods range from random

1https://stats.stackexchange.com/questions/74350/is-randomization-reliable-with-small-samples.
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number tables to specialized software. Irrespective of the tools used, reporting on the
randomization schedule applied should also answer the following two questions:

• Is the randomization schedule based on an algorithm or a principle that can be
written down and, based on the description, be reapplied by anyone at a later time
point resulting in the same group composition? If yes, we are most likely dealing
with a “pseudo-randomization” (e.g., see below comments about the so-called
Latin square design).

• Does the randomization schedule exclude any subjects and groups that belong to
the experiment? If yes, one should be aware of the risks associated with excluding
some groups or subjects such as a positive control group (see chapter “Out of
Control? Managing Baseline Variability in Experimental Studies with Control
Groups”).

An answer “yes” to either of the above questions does not automatically mean
that something incorrect or inappropriate is being done. In fact, a scientist may take a
decision well justified by their experience with and need of particular experimental
situation. However, in any case, the answer “yes” to either or both of the questions
above mandates the complete and transparent description of the study design with
the subject allocation schedule.

2.1.1 Simple Randomization
One of the common randomization strategies used for between-subject study designs
is called simple (or unrestricted) randomization. Simple random sampling is defined
as the process of selecting subjects from a population such that just the following two
criteria are satisfied:

• The probability of assignment to any of the experimental groups is equal for each
subject.

• The assignment of one subject to a group does not affect the assignment of any
other subject to that same group.

With simple randomization, a single sequence of random values is used to guide
assignment of subjects to groups. Simple randomization is easy to perform and can
be done by anyone without a need to involve professional statistical help. However,
simple randomization can be problematic for studies with small sample sizes. In the
example below, 16 subjects had to be allocated to 4 treatment conditions. Using
Microsoft Excel’s function RANDBETWEEN (0.5;4.5), there were 16 random
integer numbers from 1 to 4 generated. Obviously, this method has resulted in an
unequal number of subjects among groups (e.g., there is only one subject assigned to
group 2). This problem may occur irrespective of whether one uses machine-
generated random numbers or simply tosses a coin.
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Subject
ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Group ID 4 1 1 3 3 1 4 4 3 4 3 3 4 2 3 1

An alternative approach would be to generate a list of all treatments to be
administered (top row in the table below) and generate a list of random numbers
(as many as the total number of subjects in a study) using a Microsoft Excel’s
function RAND() that returns random real numbers greater than or equal to 0 and
less than 1 (this function requires no argument):

Treatment 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Random
number

0.76 0.59 0.51 0.90 0.64 0.10 0.50 0.48 0.22 0.37 0.05 0.09 0.73 0.83 0.50 0.43

The next step would be to sort the treatment row based on the values in the
random number row (in an ascending or descending manner) and add a Subject ID
row:

Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Treatment 3 3 2 3 3 4 2 2 4 1 1 2 4 1 4 1

Random
number

0.05 0.09 0.10 0.22 0.37 0.43 0.48 0.50 0.50 0.51 0.59 0.64 0.73 0.76 0.83 0.90

There is an equal number of subjects (four) assigned to each of the four treatment
conditions, and the assignment is random. This method can also be used when group
sizes are not equal (e.g., when a study is conducted with different numbers of
genetically modified animals and animals of wild type).

However, such randomization schedule may still be problematic for some types
of experiments. For example, if the subjects are tested one by one over the course of
1 day, the first few subjects could be tested in the morning hours while the last
subjects – in the afternoon. In the example above, none of the first eight subjects is
assigned to group 1, while the second half does not include any subject from group
3. To avoid such problems, block randomization may be applied.

2.1.2 Block Randomization
Blocking is used to supplement randomization in situations such as the one
described above – when one or more external factors change or may change during
the period when the experiment is run. Blocks are balanced with predetermined
group assignments, which keeps the numbers of subjects in each group similar at all
times. All blocks of one experiment have equal size, and each block represents all
independent variables that are being studied in the experiment.

The first step in block randomization is to define the block size. The minimum
block size is the number obtained by multiplying numbers of levels of all indepen-
dent variables. For example, an experiment may compare the effects of a vehicle and
three doses of a drug in male and female rats. The minimum block size in such case
would be eight rats per block (i.e., 4 drug dose levels � 2 sexes). All subjects can be
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divided into N blocks of size X�Y, where X is a number of groups or treatment
conditions (i.e., 8 for the example given) and Y – number of subjects per treatment
condition per block. In other words, there may be one or more subjects per treatment
condition per block so that the actual block size is multiple of a minimum block size
(i.e., 8, 16, 24, and so for the example given above).

The second step is, after block size has been determined, to identify all possible
combinations of assignment within the block. For instance, if the study is evaluating
effects of a drug (group A) or its vehicle (group B), the minimum block size is equal
to 2. Thus, there are just two possible treatment allocations within a block: (1) AB
and (2) BA. If the block size is equal to 4, there is a greater number of possible
treatment allocations: (1) AABB, (2) BBAA, (3) ABAB, (4) BABA, (5) ABBA, and
(6) BAAB.

The third step is to randomize these blocks with varying treatment allocations:

Block number 4 3 1 6 5 2

Random number 0.015 0.379 0.392 0.444 0.720 0.901

And, finally, the randomized blocks can be used to determine the subjects’
assignment to the groups. In the example above, there are 6 blocks with 4 treatment
conditions in each block, but this does not mean that the experiment must include
24 subjects. This random sequence of blocks can be applied to experiments with a
total number of subjects smaller or greater than 24. Further, the total number of
subjects does not have to be a multiple of 4 (block size) as in the example below with
a total of 15 subjects:

Block
number

4 3 1 6

Random
number

0.015 0.379 0.392 0.444

Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 –

Treatment B A B A A B A B A A B B B A A –

It is generally recommended to blind the block size to avoid any potential
selection bias. Given the low sample sizes typical for preclinical research, this
recommendation becomes a mandatory requirement at least for confirmatory
experiments (see chapter “Resolving the Tension Between Exploration and Confir-
mation in Preclinical Biomedical Research”).

2.1.3 Stratified Randomization
Simple and block randomization are well suited when the main objective is to
balance the subjects’ assignment to the treatment groups defined by the independent
variables whose impact is to be studied in an experiment. With sample sizes that are
large enough, simple and block randomization may also balance the treatment
groups in terms of the unknown characteristics of the subjects. However, in many
experiments, there are baseline characteristics of the subjects that do get measured
and that may have an impact on the dependent (measured) variables (e.g., subjects’
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body weight). Potential impact of such characteristics may be addressed by
specifying inclusion/exclusion criteria, by including them as covariates into a statis-
tical analysis, and (or) may be minimized by applying stratified randomization
schedules.

It is always up to a researcher to decide where there are such potentially impactful
covariates that need to be controlled and what is the best way of dealing with them.
In case of doubt, the rule of thumb is to avoid any risk, apply stratified randomiza-
tion, and declare an intention to conduct a statistical analysis that will isolate a
potential contribution of the covariate(s).

It is important to acknowledge that, in many cases, information about such
covariates may not be available when a study is conceived and designed. Thus, a
decision to take covariates into account often affects the timing of getting the
randomization conducted. One common example of such a covariate is body weight.
A study is planned, and sample size is estimated before the animals are ordered or
bred, but the body weights will not be known until the animals are ready. Another
example is the size of the tumors that are inoculated and grow at different rates for a
pre-specified period of time before the subjects start to receive experimental
treatments.

For most situations in preclinical research, an efficient way to conduct stratified
randomization is to run simple (or block) randomization several times (e.g.,
100 times) and, for each iteration, calculate means for the covariate per each group
(e.g., body weights for groups A and B in the example in previous section). The
randomization schedule that yields the lowest between-group difference for the
covariate would then be chosen for the experiment. Running a large number of
iterations does not mean saving excessively large volumes of data. In fact, several
tools used to support randomization allow to save the seed for the random number
generator and re-create the randomization schedule later using this seed value.

Although stratified randomization is a relatively simple technique that can be of
great help, there are some limitations that need to be acknowledged. First, stratified
randomization can be extended to two or more stratifying variables. However, given
the typically small sample sizes of preclinical studies, it may become complicated to
implement if many covariates must be controlled. Second, stratified randomization
works only when all subjects have been identified before group assignment. While
this is often not a problem in preclinical research, there may be situations when a
large study sample is divided into smaller batches that are taken sequentially into the
study. In such cases, more sophisticated procedures such as the covariate adaptive
randomization may need to be applied similar to what is done in clinical research
(Kalish and Begg 1985). With this method, subjects are assigned to treatment groups
by taking into account the specific covariates and assignments of subjects that have
already been allocated to treatment groups. We intentionally do not provide any
further examples or guidance on such advanced randomization methods as they
should preferably be developed and applied in consultation with or by
biostatisticians.
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2.1.4 The Case of Within-Subject Study Designs
The above discussion on the randomization schedules referred to study designs
known as between-subject. A different approach would be required if a study is
designed as within-subject. In such study designs also known as the crossover,
subjects may be given sequences of treatments with the intent of studying the
differences between the effects produced by individual treatments. One should
keep in mind that such sequence of testing always bears the danger that the first
test might affect the following ones. If there are reasons to expect such interference,
within-subjects designs should be avoided.

In the simplest case of a crossover design, there are only two treatments and only
two possible sequences to administer these treatments (e.g., A-B and B-A). In
nonclinical research and, particularly, in pharmacological studies, there is a strong
trend to include at least three doses of a test drug and its vehicle. A Latin square
design is commonly used to allocate subjects to treatment conditions. Latin square is
a very simple technique, but it is often applied in a way that does not result in a
proper randomization (Table 2).

In this example, each subject receives each of the four treatments over four
consecutive study periods, and, for any given study period, each treatment is equally
represented. If there are more than four subjects participating in a study, then the
above schedule is copied as many times as need to cover all study subjects.

Despite its apparent convenience (such schedules can be generated without any
tools), resulting allocation schedules are predictable and, what is even worse, are not
balanced with respect to first-order carry-over effects (e.g., except for the first test
period, D comes always after C). Therefore, such Latin square designs are not an
example of properly conducted randomization.

One solution would be to create a complete set of orthogonal Latin Squares. For
example, when the number of treatments equals three, there are six (i.e., 3!) possible
sequences – ABC, ACB, BAC, BCA, CAB, and CBA. If the sample size is a
multiple of six, then all six sequences would be applied. As the preclinical studies
typically involve small sample sizes, this approach becomes problematic for larger
numbers of treatments such as 4, where there are already 24 (i.e., 4!) possible
sequences.

The Williams design is a special case of a Latin square where every treatment
follows every other treatment the same number of times (Table 3).

The Williams design maintains all the advantages of the Latin square but is
balanced (see Jones and Kenward 2003 for a detailed discussion on the Williams
squares including the generation algorithms). There are six Williams squares

Table 2 A Latin square
design as a common
example of a pseudo-
randomization

Subject

Consecutive tests (or study periods)

1 2 3 4

#1 A B C D

#2 B C D A

#3 C D A B

#4 D A B C
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possible in case of four treatments. Thus, if there are more than four subjects, more
than one Williams square would be applied (e.g., two squares for eight subjects).

Constructing the Williams squares is not a randomization yet. In studies based on
within-subject designs, subjects are not randomized to treatment in the same sense as
they are in the between-subject design. For a within-subject design, the treatment
sequences are randomized. In other words, after the Williams squares are constructed
and selected, individual sequences are randomly assigned to the subjects.

2.2 Tools to Conduct Randomization

The most common and basic method of simple randomization is flipping a coin. For
example, with two treatment groups (control versus treatment), the side of the coin
(i.e., heads, control; tails, treatment) determines the assignment of each subject.
Other similar methods include using a shuffled deck of cards (e.g., even, control;
odd, treatment), throwing a dice (e.g., below and equal to 3, control; over 3, treat-
ment), or writing numbers of pieces of paper, folding them, mixing, and then
drawing one by one. A random number table found in a statistics book, online
random number generators (random.org or randomizer.org), or computer-generated
random numbers (e.g., using Microsoft Excel) can also be used for simple randomi-
zation of subjects. As explained above, simple randomization may result in an
unbalanced design, and, therefore, one should pay attention to the number of
subjects assigned to each treatment group. But more advanced randomization
techniques may require dedicated tools and, whenever possible, should be supported
by professional biostatisticians.

Randomization tools are typically included in study design software, and, for
in vivo research, the most noteworthy example is the NC3Rs’ Experimental Design
Assistant (www.eda.nc3rs.org.uk). This freely available online resource allows to
generate and share a spreadsheet with the randomized allocation report after the
study has been designed (i.e., variables defined, sample size estimated, etc.). Similar
functionality may be provided by Electronic Laboratory Notebooks that integrate
study design support (see chapter “Electronic Lab Notebooks and Experimental
Design Assistants”).

Randomization is certainly supported by many data analysis software packages
commonly used in research. In some cases, there is even a free tool that allows to
conduct certain types of randomization online (e.g., QuickCalcs at www.graphpad.
com/quickcalcs/randMenu/).

Table 3 An example of a
Williams design

Subject

Consecutive tests (or study periods)

1 2 3 4

#1 A B C D

#2 B D A C

#3 C A D B

#4 D C B A
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Someone interested to have a nearly unlimited freedom in designing and
executing different types of randomization will benefit from the resources generated
by the R community (see https://paasp.net/resource-center/r-scripts/). Besides being
free and supported by a large community of experts, R allows to save the scripts used
to obtain randomization schedules (along with the seed numbers) that makes the
overall process not only reproducible and verifiable but also maximally transparent.

2.3 Randomization: Exceptions and Special Cases

Randomization is not and should never be seen as a goal per se. The goal is to
minimize the risks of bias that may affect the design, conduct, and analysis of a study
and to enable application of other research methods (e.g., certain statistical tests).
Randomization is merely a tool to achieve this goal.

If not dictated by the needs of data analysis or the intention to implement
blinding, in some cases, pseudo-randomizations such as the schedules described in
Tables 1 and 2 may be sufficient. For example, animals delivered by a qualified
animal supplier come from large batches where the breeding schemes themselves
help to minimize the risk of systematic differences in baseline characteristics. This is
in contrast to clinical research where human populations are generally much more
heterogeneous than populations of animals typically used in research.

Randomization becomes mandatory in case animals are not received from major
suppliers, are bred in-house, are not standard animals (i.e., transgenic), or when they
are exposed to an intervention before the initiation of a treatment. Examples of
intervention may be surgery, administration of a reagent substance inducing long-
term effects, grafts, or infections. In these cases, animals should certainly be
randomized after the intervention.

When planning a study, one should also consider the risk of between-subject
cross-contamination that may affect the study outcome if animals receiving different
treatment(s) are housed within the same cage. In such cases, the most optimal
approach is to reduce the number of subjects per cage to a minimum that is
acceptable from the animal care and use perspective and adjust the randomization
schedule accordingly (i.e., so that all animals in the cage receive the same treatment).

There are situations when randomization becomes impractical or generates other
significant risks that outweigh its benefits. In such cases, it is essential to recognize
the reasons why randomization is applied (e.g., ability to apply certain statistical
tests, prevention of selection bias, and support of blinding). For example, for an
in vitro study with multi-well plates, randomization is usually technically possible,
but one would need to recognize the risk of errors introduced during manual
pipetting into a 96- or 384-well plate. With proper controls and machine-read
experimental readout, the risk of bias in such case may not be seen as strong enough
to accept the risk of a human error.

Another common example is provided by studies where incremental drug doses
or concentrations are applied during the course of a single experiment involving just
one subject. During cardiovascular safety studies, animals receive first an infusion of
a vehicle (e.g., over a period of 30 min), followed by the two or three concentrations
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of the test drug, and the hemodynamics is being assessed along with the blood
samples taken. As the goal of such studies is to establish concentration-effect
relationships, one has no choice but to accept the lack of randomization. The only
alternatives would be to give up on the within-subject design or conduct the study
over many days to allow enough time to wash the drug out between the test days.
Needless to say, neither of these options is perfect for a study where the baseline
characteristics are a critical factor in keeping the sample size low. In this example,
the desire to conduct a properly randomized study comes into a conflict with ethical
considerations.

A similar design is often used in electrophysiological experiments (in vitro or
ex vivo) where a test system needs to be equilibrated and baselined for extended
periods of time (sometimes hours) to allow subsequent application of test drugs
(at ascending concentrations). Because a washout cannot be easily controlled, such
studies also do not follow randomized schedules of testing various drug doses.

The low-throughput studies such as in electrophysiology typically go over many
days, and every day there is a small number of subjects or data points added. While
one may accept the studies being not randomized in some cases, it is important to
stress that there should be other measures in place that control potential sources of
bias. It is a common but usually unacceptable practice to analyze the results each
time a new data point has been added in order to decide whether a magic P value
sank below 0.05 and the experiment can stop. For example, in one recent publica-
tion, it was stated: “For optogenetic activation experiments, cell-type-specific abla-
tion experiments, and in vivo recordings (optrode recordings and calcium imaging),
we continuously increased the number of animals until statistical significance was
reached to support our conclusions.” Such an approach should be avoided by clear
experimental planning and definition of study endpoints.

The above examples are provided only to illustrate that there may be special cases
when randomization may not be done. This is usually not an easy decision to make
and even more difficult to defend later. Therefore, one should always be advised to
seek a professional advice (i.e., interaction with the biostatisticians or colleagues
specializing in the risk assessment and study design issues). Needless to say, this
advice should be obtained before the studies are conducted.

In the ideal case, once the randomization was applied to allocate subjects to
treatment conditions, the randomization should be maintained through the study
conduct and analysis to control against potential performance and outcome detection
bias, respectively. In other words, it would not be appropriate first to assign the
subjects, for example, to groups A and B and then do all experimental manipulations
first with the group A and then with the group B.

3 Blinding

In clinical research, blinding and randomization are recognized as the most important
design techniques for avoiding bias (ICH Harmonised Tripartite Guideline 1998; see
also chapter “Learning from Principles of Evidence-Based Medicine to Optimize
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Nonclinical Research Practices”). In the preclinical domain, there is a number of
instruments assessing risks of bias, and the criteria most often included are randomi-
zation and blinding (83% and 77% of a total number of 30 instruments analyzed,
Krauth et al. 2013).

While randomization and blinding are often discussed together and serve highly
overlapping objectives, attitude towards these two research rigor measures is strik-
ingly different. The reason for a higher acceptance of randomization compared to
blinding is obvious – randomization can be implemented essentially at no cost, while
blinding requires at least some investment of resources and may therefore have a
negative impact on the research unit’s apparent capacity (measured by the number of
completed studies, irrespective of quality).

Since the costs and resources are not an acceptable argument in discussions on
ethical conduct of research, we often engage a defense mechanism, called rationali-
zation, that helps to justify and explain why blinding should not be applied and do so
in a seemingly rational or logical manner to avoid the true explanation. Arguments
against the use of blinding can be divided into two groups.

One group comprises a range of factors that are essentially psychological barriers
that can be effectively addressed. For example, one may believe that his/her research
area or a specific research method has an innate immunity against any risk of bias.
Or, alternatively, one may believe that his/her scientific excellence and the ability to
supervise the activities in the lab make blinding unnecessary. There is a great
example that can be used to illustrate that there is no place for beliefs and one
should rather rely on empirical evidence. For decades, compared to male musicians,
females have been underrepresented in major symphonic orchestras despite having
equal access to high-quality education. The situation started to change in the
mid-1970s when blind auditions were introduced and the proportion of female
orchestrants went up (Goldin and Rouse 2000). In preclinical research, there are
also examples of the impact of blinding (or a lack thereof). More specifically, there
were studies that reveal substantially higher effect sizes reported in the experiments
that were not randomized or blinded (Macleod et al. 2008).

Another potential barrier is related to the “trust” within the lab. Bench scientists
need to be explained what the purpose of blinding is and, in the ideal case, be
actively involved in development and implementation of blinding and other research
rigor measures. With the proper explanation and engagement, blinding will not be
seen as an unfriendly act whereby a PI or a lab head communicates a lack of trust.

The second group of arguments against the use of blinding is actually composed
of legitimate questions that need to be addressed when designing an experiment.
As mentioned above in the section on randomization, a decision to apply blinding
should be justified by the needs of a specific experiment and correctly balanced
against the existing and potential risks.

Blinding and Randomization 93



3.1 Fit-for-Purpose Blinding

It requires no explanation that, in preclinical research, there are no double-blinded
studies in a sense of how it is meant in the clinic. However, similar to clinical
research, blinding in preclinical experiments serves to protect against two potential
sources of bias: bias related to blinding of personnel involved in study conduct
including application of treatments (performance bias) and bias related to blinding of
personnel involved in the outcome assessment (detection bias).

Analysis of the risks of bias in a particular research environment or for a specific
experiment allows to decide which type of blinding should be applied and whether
blinding is an appropriate measure against the risks.

There are three types or levels of blinding, and each one of them has its use:
assumed blinding, partial blinding, and full blinding. With each type of blinding,
experimenters allocate subjects to groups, replace the group names with blind codes,
save the coding information in a secure place, and do not access this information
until a certain pre-defined time point (e.g., until the data are collected or the study is
completed and analyzed).

3.1.1 Assumed Blinding
In the assumed blinding, experimenters have access to the group or treatment codes
at all times, but they do not know the correspondence between group and treatment
before the end of the study. With the partial or full blinding, experimenters do not
have access to the coding information until a certain pre-defined time point.

Main advantage of the assumed blinding is that an experiment can be conducted
by one person who plans, performs, and analyzes the study. The risk of bias may be
relatively low if the experiments are routine – e.g., lead optimization research in drug
discovery or fee-for-service studies conducted using well-established standardized
methods.

Efficiency of assumed blinding is enhanced if there is a sufficient time gap
between application of a treatment and the outcome recording/assessment. It is
also usually helpful if the access to the blinding codes is intentionally made more
difficult (e.g., blinding codes are kept in the study design assistant or in a file on an
office computer that is not too close to the lab where the outcomes will be recorded).

If introduced properly, assumed blinding can guard against certain unwanted
practices such as remeasurement, removal, and reclassification of individual
observations or data points (three evil Rs according to Shun-Shin and Francis
2013). In preclinical studies with small sample sizes, such practices have particularly
deleterious consequences. In some cases, remeasurement even of a single subject
may skew the results in a direction suggested by the knowledge of group allocation.
One should emphasize that blinding is not necessarily an instrument against the
remeasurement (it is often needed or unavoidable) but rather helps to avoid risks
associated with it.

3.1.2 Partial Blinding
There are various situations where blinding (with no access to the blinding codes) is
implemented not for the entire experiment but only for a certain part of it, e.g.:
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• No blinding during the application of experimental treatment (e.g., injection of a
test drug) but proper blinding during the data collection and analysis

• No blinding during the conduct of an experiment but proper blinding during
analysis

For example, in behavioral pharmacology, there are experiments where subjects’
behavior is video recorded after a test drug is applied. In such cases, blinding is
applied to analysis of the video recordings but not the drug application phase.
Needless to say, blinded analysis has typically to be performed by someone who
was not involved in the drug application phase.

A decision to apply partial blinding is based on (a) the confidence that the risks of
bias are properly controlled during the unblinded parts of the experiment and/or
(b) rationale assessment of the risks associated with maintaining blinding throughout
the experiment. As an illustration of such decision-making process, one may imagine
a study where the experiment is conducted in a small lab (two or three people) by
adequately trained personnel that is not under pressure to deliver results of a certain
pattern, data collection is automatic, and data integrity is maintained at every step.
Supported by various risk reduction measures, such an experiment may deliver
robust and reliable data even if not fully blinded.

Importantly, while partial blinding can adequately limit the risk of some forms of
bias, it may be less effective against the performance bias.

3.1.3 Full Blinding
For important decision-enabling studies (including confirmatory research, see chap-
ter “Resolving the Tension Between Exploration and Confirmation in Preclinical
Biomedical Research”), it is usually preferable to implement full blinding rather than
to explain why it was not done and argue that all the risks were properly controlled.

It is particularly advisable to follow full blinding in the experiments that are for
some reasons difficult to repeat. For example, these could be studies running over
significant periods of time (e.g., many months) or studies using unique resources or
studies that may not be repeated for ethical reasons. In such cases, it is more rational
to apply full blinding rather than leave a chance that the results will be questioned on
the ground of lacking research rigor.

As implied by the name, full blinding requires complete allocation concealment
from the beginning until the end of the experiment. This requirement may translate
into substantial costs of resources. In the ideal scenario, each study should be
supported by at least three independent people responsible for:

• (De)coding, randomization
• Conduct of the experiment such as handling of the subjects and application of test

drugs (outcome recording and assessment)
• (Outcome recording and assessment), final analysis

The main reason for separating conduct of the experiment and the final analysis is
to protect against potential unintended unblinding (see below). If there is no risk of
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unblinding or it is not possible to have three independent people to support the
blinding of an experiment, one may consider a single person responsible for every
step from the conduct of the experiment to the final analysis. In other words, the
study would be supported by two independent people responsible for:

• (De)coding, randomization
• Conduct of the experiment such as handling of the subjects and application of test

drugs, outcome recording and assessment, and final analysis

3.2 Implementation of Blinding

Successful blinding is related to adequate randomization. This does not mean that
they should always be performed in this sequence: first randomization and then
blinding. In fact, the order may be reversed. For example, one may work with an
offspring of the female rats that received experimental and control treatments while
pregnant. As the litter size may differ substantially between the dams, randomization
may be conducted after the pups are born, and this does not require allocation
concealment to be broken.

The blinding procedure has to be carefully thought through. There are several
factors that are listed below and that can turn a well-minded intention into a waste of
resources.

First, blinding should as far as possible cover the entire experimental setup – i.e.,
all groups and subjects. There is an unacceptable practice to exclude positive
controls from blinding that is often not justified by anything other than an intention
to introduce a detection bias in order to reduce the risk of running an invalid
experiment (i.e., an experiment where a positive control failed).

In some cases, positive controls cannot be administered by the same route or
using the same pretreatment time as other groups. Typically, such a situation would
require a separate negative (vehicle) control treated in the same way as the positive
control group. Thus, the study is only partially blinded as the experimenter is able to
identify the groups needed to “validate” the study (negative control and positive
control groups) but remains blind to the exact nature of the treatment received by
each of these two groups. For a better control over the risk of unblinding, one may
apply a “double-dummy” approach where all animals receive the same number of
administrations via the same routes and pretreatment times.

Second, experiments may be unintentionally unblinded. For example, drugs may
have specific, easy to observe physicochemical characteristics, or drug treatments
may change the appearance of the subjects or produce obvious adverse effects.
Perhaps, even more common is the unblinding due to the differences in the appear-
ance of the drug solution or suspension dependent on the concentration. In such
cases, there is not much that can be done but it is essential to take corresponding
notes and acknowledge in the study report or publication. It is interesting to note that
the unblinding is often cited as an argument against the use of blinding (Fitzpatrick
et al. 2018); however, this argument reveals another problem – partial blinding
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schemes are often applied as a normative response without any proper risk of bias
assessment.

Third, blinding codes should be kept in a secure place avoiding any risk that the
codes are lost. For in vivo experiments, this is an ethical requirement as the study
will be wasted if it cannot be unblinded at the end.

Fourth, blinding can significantly increase the risk of mistakes. A particular
situation that one should be prepared to avoid is related to lack of accessibility of
blinding codes in case of emergency. There are situations when a scientist
conducting a study falls ill and the treatment schedules or outcome assessment
protocols are not available or a drug treatment is causing disturbing adverse effects
and attending veterinarians or caregivers call for a decision in the absence of a
scientist responsible for a study. It usually helps to make the right decision if it is
known that an adverse effect is observed in a treatment group where it can be
expected. Such situations should be foreseen and appropriate guidance made avail-
able to anyone directly or indirectly involved in an experiment. A proper study
design should define a backup person with access to the blinding codes and include
clear definition of endpoints.

Several practical tips can help to reduce the risk of human-made mistakes. For
example, the study conduct can be greatly facilitated if each treatment group is
assigned its own color. Then, this color coding would be applied to vials with the test
drugs, syringes used to apply the drug, and the subjects (e.g., apply solution from a
green-labeled vial using a green-labeled syringe to an animal from a green-labeled
cage or with a green mark on its tail). When following such practice, one should not
forget to randomly assign color codes to treatment conditions. Otherwise, for
example, yellow color is always used for vehicle control, green for the lowest
dose, and so forth.

To sum up, it is not always lacking resources that make full blinding not possible
to apply. Further, similar to what was described above for randomization, there are
clear exception cases where application of blinding is made problematic by the very
nature of the experiment itself.

4 Concluding Recommendations

Most, if not all, guidelines, recommendations, and other texts on Good Research
Practice emphasize the importance of blinding and randomization (chapters
“Guidelines and Initiatives for Good Research Practice”, and “General Principles
of Preclinical Study Design”). There is, however, very limited specific guidance on
when and how to apply blinding and randomization. The present chapter aims to
close this gap.

Generally speaking, experiments should be blinded and randomized if:

• This is a confirmatory research (see chapter “Resolving the Tension Between
Exploration and Confirmation in Preclinical Biomedical Research”) that has a
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major impact on decision-making and that cannot be readily repeated (for ethical
or resource-related reasons).

• No other measures can be applied to protect against existing and potential risks
of bias.

There are various sources of bias that affect the outcome of experimental studies
and these sources are unique and specific to each research unit. There is usually no
one who knows these risks better than the scientists working in the research unit, and
it is always up to the scientist to decide if, when, and how blinding and randomiza-
tion should be implemented. However, there are several recommendations that can
help to decide and act in the most effective way:

• Conduct a risk assessment for your research environment, and, if you do not
know how to do that, ask for a professional support or advice.

• Involve your team in developing and implementing the blinding/randomization
protocols, and seek the team members’ feedback regarding the performance of
these protocols (and revise them, as needed).

• Provide training not only on how to administer blinding and randomization but
also to preempt any questions related to the rationale behind these measures (i.e.,
experiments are blinded not because of the suspected misconduct or lack of trust).

• Describe blinding and randomization procedures in dedicated protocols with as
many details as possible (including emergency plans and accident reporting, as
discussed above).

• Ensure maximal transparency when reporting blinding and randomization (e.g.,
in a publication). When deciding to apply blinding and randomization, be maxi-
mally clear about the details (Table 4). When deciding against, be open about the
reasons for such decision. Transparency is also essential when conducting multi-
laboratory collaborative projects or when a study is outsourced to another labora-
tory. To avoid any misunderstanding, collaborators should specify expectations
and reach alignment on study design prior to the experiment and communicate all
important details in study reports.

Blinding and randomization should always be a part of a more general effort to
introduce and maintain research rigor. Just as the randomization increases the
likelihood that blinding will not be omitted (van der Worp et al. 2010), other
Good Research Practices such as proper documentation are also highly instrumental
in making blinding and randomization effective.

To conclude, blinding and randomization may be associated with some effort and
additional costs, but, under all circumstances, a decision to apply these research rigor
techniques should not be based on general statements and arguments by those who
do not want to leave their comfort zone. Instead, the decision should be based on the
applicable risk assessment and careful review of potential implementation burden. In
many cases, this leads to a relieving discovery that the devil is not so black as he is
painted.
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Abstract
Control groups are expected to show what happens in the absence of the inter-
vention of interest (negative control) or the effect of an intervention expected to
have an effect (positive control). Although they usually give results we can
anticipate, they are an essential component of all experiments, both in vitro and
in vivo, and fulfil a number of important roles in any experimental design.
Perhaps most importantly they help you understand the influence of variables
that you cannot fully eliminate from your experiment and thus include them in
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your analysis of treatment effects. Because of this it is essential that they are
treated as any other experimental group in terms of subjects, randomisation,
blinding, etc. It also means that in almost all cases, contemporaneous control
groups are required. Historical and baseline control groups serve a slightly
different role and cannot fully replace control groups run as an integral part of
the experiment. When used correctly, a good control group not only validates
your experiment; it provides the basis for evaluating the effect of your treatments.

Keywords
Baseline values · Blinding · Historical controls · Negative control groups ·
Positive control groups · Sham controls · Vehicle

1 What Are Control Groups?

As Donald Rumsfeld famously said about weapons of mass destruction, there are
known knowns, known unknowns and unknown unknowns. This is also true of
experiments. Through good experimental design, we try to eliminate as much as
possible the influence of the first two, the things we know about. The purpose of
the control group is to understand the influence of the third. The term sounds
comforting, as if we have managed to somehow rein in the experiment and submitted
the study to our will. If anything, the opposite is true: the control group is a tacit
acknowledgement, not only of all the things that we can’t control but of those things that
we are not even aware of, the unknown unknowns.

The choice of appropriate control groups is intimately tied to the aims of your
study. To unambiguously demonstrate that your experimental treatment has (or has
not) had an effect in your test system, there needs to be a value against which you can
compare it. A good control group allows you to do this – a bad control group means
you cannot make valid comparisons to evaluate the activity of your test condition
and, even worse, means you may end up drawing invalid conclusions.

Several types of control groups have been described in the literature, including
positive, negative, sham, vehicle and comparative (Johnson and Besselsen 2002).
These can broadly be classed into negative and positive controls. Note that in many
studies these terms are used very loosely and, as Kramer and Font (2017) rightly
point out, a description of what the control group is being used for is better than
a label such as positive or negative which might be misleading. What are generally
referred to as negative controls include vehicle and sham groups and are expected
to show what happens in the absence of the intervention of interest. These controls
are necessary because all studies are open to unexpected effects.

In contrast, positive controls are expected to have an effect. They are used to show that
the study can detect an effect in the desired direction and thus that the experimental
protocol is sensitive to interventions expected to have an effect. They might also be used
to show the magnitude of effect that is possible with an active substance. Positive
controls are in a comparable position to your test treatment: they need a good negative
control to be of any use. Also, just like test treatments, they need to be subject to the same
randomisation and blinding procedures and must be included in the experimental design
and analysis.
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There should also be a distinction between what we could call primary and
secondary controls. Both have a value but in different areas. A primary control is
what we typically think of as a control, i.e. a group that undergoes all experimental
procedures except for the variable being investigated and which are specific to the
experimental question being studied. In contrast, a secondary control, such as
historical control values, could be used to check the conformity of the experiment
or, in the case of baseline data, could be used to verify the homogeneity of the
treatment groups at the start of the experiment. In almost all cases, the presence of a
primary control group is essential to be able draw valid conclusions from the study.

Although this review discusses primarily in vivo experiments, almost all the
points discussed apply equally to in vitro experiments. In fact, in vitro studies
are in the envious position where additional control groups can be added for little
additional cost and usually without invoking the ethical questions that are important
to consider for in vivo studies. In all other ways, in vitro studies require the same
attention to experimental design as in vivo studies as far as blinding, randomisation
and statistical analysis are concerned (Festing 2001). This should also apply to any
negative and positive controls included in the study.

In this brief review, I will only discuss the use of prospective control groups,
which are most appropriate for non-clinical studies. Retrospective controls, which
are often used in epidemiological clinical studies, to study such things as drug use
during pregnancy, substance abuse etc., and where a randomised clinical trial would
be unethical (e.g. Andrade 2017; Szekér et al. 2017), raise other issues which are
not particularly relevant to non-clinical studies and which will not be discussed here.

2 Basic Considerations for Control Groups

2.1 Attribution of Animals to Control Groups

Correct randomisation to avoid bias is a basic but essential part of any experimental
design (see chapter “Blinding and Randomization”) that applies equally to control
groups. Control groups should be treated like any other experimental group within
an experiment. Subjects for the control groups must come from the same population
as the other groups so that the experiment is carried out on a homogenous popula-
tion. This means that normally they should not be historical values nor baseline
values. As we will see below, there are specific circumstances where this is either not
possible or where some flexibility is permitted.

2.2 What Group Size for Control Groups?

As discussed elsewhere (see chapter “Building Robustness into Translational
Research”), it is fundamentally important that your experiment be adequately
powered. But does changing the relative sizes of individual groups in an experiment
affect our ability to detect an effect? The majority of nonclinical studies use similar
group sizes for all treatment groups, including controls, and there are articles on
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experimental design that present only this option (e.g. Haimez 2002; Aban and
George 2015; Singh et al. 2016). Bate and Karp (2014) have looked more closely at
the question of relative group sizes, and they show that the traditional, balanced
approach is indeed the best experimental design when all pairwise comparisons are
planned. However, when the planned comparisons are of several treatment groups
with a single control group, there is a small gain in sensitivity by having relatively
more animals in the control group. For example, in an experiment with 30 subjects
divided into 4 treatment groups and 1 control group, the power to detect a given
effect size is between 2 and 5% greater if there are 10 subjects in the control group
and 5 in each treatment group as compared to 5 equal groups of 6. By contrast, if the
treatment groups are increased in size relative to the control group (for the same total
number of subjects per experiment), there is a marked loss of power which can be
25% lower in some worst-case scenarios. It is therefore clear that the control group
should never have fewer subjects than the treatment groups.

It can sometimes be tempting to add a second experiment to increase the n values
or to expand the dose-range of the treatment being tested. The practice of combining
experiments is relatively widespread but not always apparent from the data presen-
tation. Combining data sets from two studies having identical treatment groups
is particularly hard to spot and unless it is a part of the original experimental
design should be considered a form of p-hacking (Simmons et al. 2011; Head
et al. 2015), a practice where data is manipulated until it reaches significance.
Somewhat easier to spot, but more dangerous, is the combining of experiments
involving different experimental groups. This issue is highlighted by Lew (2008)
who shows that incorrect conclusions can be drawn if the individual experiments are
not analysed separately. An example of this is shown in Fig. 1a. Another issue with
combining data from different experiments is the possibility of misinterpretation due
to Simpson’s paradox (Ameringer et al. 2009). In this case the combination of
studies leads to a different conclusion to that drawn from the individual component
studies analysed separately (Fig. 1b). Simpson’s paradox is caused by the unequal
distribution of a confounding variable between the different experiments and is often
a consequence of unequal group sizes. There are few, if any, published examples
from non-clinical work, but it has been highlighted as an issue in clinical trials, as
in the example for the antidiabetic drug rosiglitazone described by Rucker and
Schumacher (2008) where they describe a meta-analysis of several studies which
reached the opposite conclusion to each individual study. Another example
concerning the effectiveness of two treatments for kidney stones is presented by
Julious and Mullee (1994).

Ultimately, the biggest issue with combining experiments and so inflating the
n value for the control group is the same as for using historical controls (see below):
it removes one of the fundamental reasons for including a control group, namely, the
control of unknown variables affecting a particular study. If the number of animals
in the control group is different from the treated group (as in the example described
by Lew 2008) or if the df of the ANOVA do not correspond to equal groups sizes,
this should be suspected. Unfortunately, I can use an example from my work where
two experiments were combined to broaden the dose range, as seen with the second
graph in Figure 2 of Moser and Sanger (1999). The graph shows five doses of
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pindolol tested in the forced swim test, but combines two experiments evaluating
four doses each. In our defence, we clearly mentioned this, both in the methods
and in the figure legend, and we compared the two experiments statistically for
homogeneity. In retrospect, however, it would have been better to present the two
experiments in separate graphs (or at least as two separate data sets on the same
graph) with separate statistical analyses. Transparency in such cases is always the
better option when there is nothing to hide.

2.3 Controls and Blinding

Blinding is an essential part of any experiment (see chapter “Blinding and Randomi-
zation”) and must equally apply to all control groups. If you know a particular
animal has received a control substance, then you will be at risk of biasing that
animal’s data. This was demonstrated in a study at Pfizer by Machin et al. (2009)

Fig. 1 Misinterpretation of experimental outcome that results from combining data from two
separate experiments where the control values differ. Panel a shows two experiments (mean � SD,
n¼ 6) where the two treatment doses do not differ from vehicle (t-test), whereas the combined data
set (now with n ¼ 12 for the vehicle group) results in a significant biphasic effect (both doses
p < 0.05 vs vehicle, Dunnett’s test). Panel b shows two experiments correlating changes in body
temperature with plasma levels of drug. In each experiment the drug shows a weak tendency to
increase body temperature. However, when they are combined, the drug appears to have the
opposite effect, to reduce body temperature. This is an example of Simpson’s paradox. Although
both sets of figures were constructed from simulated data, they highlight the importance of
analysing separate experiments separately
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who showed that carrying out an experiment blinded greatly increased the variability
of the control group in a study of neuropathic pain where tactile analgesia was
evaluated using von Frey filaments (Fig. 2). Although the effect of the positive
control, gabapentin, appears similar in the two conditions, bear in mind that this is
largely because of a ceiling effect and does not mean that the positive control group
suffers less from such bias. Indeed, in their abstract Machin et al. (2009) state that
typical values in non-lesioned animals are around 8 g, so it is possible that carrying
out the study unblinded has exaggerated the effect of the positive control. Holman
et al. (2015) have studied the effect of blinding on effect size and shown that over
83 studies, the effect of blinding is to reduce, in some cases quite dramatically,
Hedges’s g (i.e. the difference between positive and negative control means divided
by the pooled standard deviation). Their review underlines the importance of
applying blinding to all experimental groups in a study.

3 Primary Controls

3.1 Choosing Appropriate Control Treatments: Not All Negative
Controls Are Equal

By definition, we expect a positive control to produce an effect in our test, but a
negative control to be essentially indistinguishable from vehicle. Indeed, vehicle
is often the negative control most people use. I would argue that a vehicle group is
not strictly a negative control group but more an evaluation of the baseline against

Fig. 2 Paw withdrawal
threshold measured using von
Frey filaments in the tibial
nerve transection model of
neuropathic pain. Vehicle
pretreatment is compared with
gabapentin (100 mg/kg PO)
under unblinded and blinded
conditions (�: p < 0.001
Mann-Whitney U-test; n¼ 6).
The data shown are median
values; the bar indicates the
range. Graph drawn from data
presented in Machin et al.
(2009)

106 P. Moser



which to judge the effects of other control groups and treatments. It is there to
evaluate the effects of things you cannot fully control or interventions you cannot
avoid such as animal handling for substance administration, housing conditions, etc.
One reason this neutral control cannot strictly speaking be a negative control is that
other experimental variables may interact with those unavoidable interventions.

There are some documented examples of this. For example, it has been shown that
elements of the surgical procedure necessary for implanting intracerebroventricular
cannulae in rats were sufficient to change the behavioural response resulting from an
interaction between calcium antagonists and physostigmine (Bourson andMoser 1989).
These experiments showed that the potentiation of physostigmine-induced yawning
by nifedipine was abolished by sham-lesioning procedures in rats, whereas the nifedi-
pine potentiation of apomorphine-induced yawning was unaffected. The study also
demonstrated that the presurgical drug treatment (i.e. desmethylimipramine and pento-
barbital) or 7 days isolation was alone sufficient to reduce the yawning response to
physostigmine and abolish its potentiation by nifedipine.

3.2 Vehicle Controls

These appear to be the simplest of control groups – simple administration of
the vehicle used to formulate your test substance under the same conditions
(pretreatment time, volume, concentration, etc.). This apparent simplicity can
make it easy to overlook many of the issues surrounding the choice of vehicle.
Much of the data we have for effects of vehicles has come from toxicology studies
where control animals might receive the vehicle for up to 2 years in the case of
carcinogenicity studies. Under these circumstances the tolerability and long-term
toxicity of the vehicle are the main concerns, and there are several publications
indicating the maximum tolerated doses of a wide range of potential vehicles
(ten Tije et al. 2003; Gad et al. 2006). However, while these concentrations may
be tolerated, that does not mean they are without behavioural effects. Castro et al.
(1995) examined the effects of several commonly used vehicles on locomotion in
mice and found marked effects of Tween, DMSO and ethanol-containing vehicles
at levels well below those indicated by Gad et al. (2006) as being well-tolerated.
Matheus et al. (1997) looked at the effects of Tween, propylene glycol and DMSO
on elevated plus-maze behaviour in rats following their injection into the dorsal
periaqueductal grey. Interestingly, whereas Castro et al. (1995) found DMSO to
reduce locomotion, Matheus et al. (1997) found it to increase arm entries. DMSO,
at concentrations above 15%, has also been found to modify sleep architecture in
rats (Cavas et al. 2005).

Food reward is widely used as a motivating factor in many behavioural studies,
particularly those studying operant behaviour. Modifying feeding conditions to
modulate motivation has been shown to affect response rate in an operant discrimi-
nation task (Lotfizadeh et al. 2012), and it would therefore be expected that the use
of high-calorie vehicles such as oils could have a similar effect. Although there
do not appear to be any published examples of this, it is something I have observed
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in rats trained on a delayed match to position task. The use of an oil vehicle almost
completely abolished responding (Moser unpublished observation) although we did
not establish if this was due to the high-calorie content of the vehicle or the effects
of indigestion after a large volume of oil administered directly into the stomach.

In addition to intrinsic behavioural effects, many of these vehicles also interfere
with the pharmacokinetics of the drugs being tested. ten Tije et al. (2003) have
reviewed clinical and non-clinical effects of vehicles on the pharmacokinetics of
co-administered chemotherapy agents, and Kim et al. (2007) have reported marked
effects of vehicles on the ADME properties of the insecticide deltamethrin in rats.
Some of the more striking examples include a 16-fold increase in danazol bioavail-
ability in dogs when formulated in Tween 80 compared to a commercial formulation
(Erlich et al. 1999) and up to a 40% decrease in the blood/plasma ratio for paclitaxel
when formulated in cremephor EL (Loos et al. 2002).

3.3 Sham Controls

The term sham control is usually employed when it is considered that there is a part
of the experimental protocol that we expect to have an impact on the outcome.
Although it could be argued that the handling and injection procedure associated
with administration of a drug vehicle could be expected to have some effect, the term
sham control is usually applied when there is a surgical intervention of some sort.
If, for example, the experiment involves a chemical lesion of the brain, the sham
controls will undergo a similar surgical procedure without injection of the toxin, but
including anesthesia, placement in a stereotaxic frame, incision of the scalp, trepa-
nation, lowering of a dummy cannula into the brain (this is often omitted), suturing
of the wound and appropriate postsurgical care. If the intervention is the surgical
removal of tissue, then the sham control animals will be anesthetized and opened
but without internal intervention and then sutured and given the same postsurgical
care as the lesion group. Such groups are essential, as the anesthesia and postsurgical
pain can be very stressful to laboratory animals (Hüske et al. 2016). In addition,
anesthesia has also been shown to induce long-lasting effects on memory in rats
(Culley et al. 2003). As part of a study to understand the processes involved in liver
regeneration, Werner et al. (2014) reported on the effects of sham surgery procedures
and anesthesia on the expression pattern of microRNAs in rat liver as compared
to partial hepatectomy. They found 49 microRNAs modified by hepatectomy and
45 modified by sham laparotomy, with 10 microRNAs showing similar changes
after both real and sham surgery. Anesthesia alone had much less effect, with only
one microRNA changing in the same direction as surgery. The impact of sham
surgery has also been highlighted by Cole et al. (2011) who compared the effects of
standard sham procedures used in research on traumatic brain injury (craniotomy
by drill or manual trepanation) with the effects of anesthesia alone. They found that
the traditional sham control induced significant pro-inflammatory, morphological
and behavioural changes and that these could confound interpretation in brain injury
models.
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3.4 Non-neutral Control Groups

Many experimental designs require more than one control group. There are many
situations that require a neutral control group (sham, untreated etc.), a group
undergoing an intervention (drug challenge, lesion etc.) and a positive control or
comparator group (a treatment known to reverse the effects of the intervention – see
below). Comparison of the neutral control with the intervention control shows
that the intervention has had an effect – and the intervention group then becomes
the point of comparison for treatments aimed at reversing its effects. This could
be the effect of a lesion on behaviour (e.g. Hogg et al. 1998), a drug challenge such
as amphetamine to increase locomotion (e.g. Moser et al. 1995) or an environmental
change such as housing conditions, diet, light cycle, etc. (e.g. He et al. 2010). It is
important to be able to demonstrate that this intervention has produced a reliable
change compared to the neutral baseline or, in some cases, to a sham control. As
discussed above, these controls are no longer neutral, and only through appropriate
preliminary experiments can you determine how much these interventions (sham
or non-sham) interfere with the primary purpose of your study. Such preliminary
experiments ultimately help to reduce animal numbers as otherwise it might be
necessary to include neutral, sham and intervention controls in every experiment
instead of just sham and intervention. The number of times you expect to use
a particular experimental design should help guide you to the optimal solution for
limiting animal use.

3.5 Controls for Mutant, Transgenic and Knockout Animals

This is a vast topic that deserves a full review to itself (see chapter “Genetic Background
and Sex: Impact of Generalizability of Research Findings in Pharmacology Studies”)
and will only be covered superficially here. The use of mutant animals is increasing
compared to non-genetically altered animals (e.g. UK Home Office statistics, 2017:
https://www.gov.uk/government/statistics/statistics-of-scientific-procedures-on-living-
animals-great-britain-2017), and they raise particular issues relating to the choice of
control groups. If transgenic animals are maintained as a homozygous colony, they will
gradually show genetic drift compared to the original non-modified founder line. The
recommendation is to breed from heterozygotes and use wild-type littermates as
controls for homozygous animals (Holmdahl and Malissen 2012). The alternative,
using animals from the founder strain, is fraught with difficulty due to the multiplication
of strains, as highlighted by Kelmensen (https://www.jax.org/news-and-insights/jax-
blog/2016/june/there-is-no-such-thing-as-a-b6-mouse). Furthermore, background strain
is known to have a major impact on the phenotype of transgenic animals (e.g. Brayton
et al. 2012; Fontaine and Davis 2016). Jackson Laboratories have a page on their
website dedicated to helping researchers choose an appropriate control for transgenic
animals: https://www.jax.org/jax-mice-and-services/customer-support/technical-sup
port/breeding-and-husbandry-support/considerations-for-choosing-controls. The use of
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conditional expression systems, where the mutation can be expressed or not, can greatly
improve the pertinence of control groups in transgenic animals (e.g. Justice et al. 2011).

Use of littermates is not always possible, particularly in the case of inbred mutant
animals such as the spontaneously hypertensive rat (SHR). In the case of SHRs,
the practice is to use the Wistar-Kyoto rat as a normotensive control as it is derived
from the same ancestral Wistar line but its suitability as a control is questioned
(Zhang-James et al. 2013).

4 Positive Controls

Whereas a negative control has the single job of providing a baseline from which to
judge other interventions, positive controls can wear several hats at once. They can
(a) demonstrate that the experimental conditions are sensitive to an active interven-
tion, (b) provide a reference effect-size against which other interventions can be
judged and (c) provide a reference effect in order to judge the conformity of that
particular experiment to historical studies. If your positive control does not differ
from the negative (e.g. vehicle) control group, then you need to study the data before
making any interpretation of the results with novel test substances. Figure 3
illustrates some of the potential outcomes of an experiment with a negative and a
positive control, suggesting how you should interpret the results.

The posi ve control is 
significantly different from 
the nega ve (eg vehicle) 
control

The experiment is valid 
and effects of test 
substances can be 
interpreted as nega ve 
(T1) or posi ve (T2)

The experiment is not 
valid and effects of test 
substances cannot be 
reliably interpreted

The posi ve control is not 
significantly different from 
the nega ve (eg vehicle) 
control

Are there differences in the 
protocol (strain, vehicle etc…) 
compared to historical studies that 
could explain the differences?

Veh Pos T1 T2

* *

*

* The posi ve control is not 
significantly different from 
the nega ve (eg vehicle) 
control

The experiment is not 
valid and effects of test 
substances cannot be 
reliably interpreted

Are there differences in the way the 
posi ve control was formulated? 
Is from the same supplier/batch?
Has it been stored correctly?
Is it past its re-analysis date?

Outcome Interpreta on Some ques ons you should askExperiment

Exp 1

Exp 2

Exp 3

Fig. 3 Interpreting results when the positive and negative controls are not significantly different.
The first case, Experiment 1, has a vehicle group (Veh) and a positive control (Pos) that are within
their historical ranges (horizontal light blue and green shaded boxes, respectively). The asterisk
indicates significant difference compared to the vehicle. In Experiments 2 and 3, the positive and
negative controls are outside their expected range. How the effects of the test substances T1 and T2
are interpreted, as well as the questions that should be asked, are different between these scenarios.
This figure is inspired by, and adapted from, an article from PAASP (https://paasp.net/heads-i-win-
tails-you-lose/)
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Proving that the experimental conditions are sensitive to an active intervention
(typically a clinically active substance) is the main reason for using a positive
control. Just as we do not necessarily know all the variables that can affect the
response in negative control groups, similarly we cannot know all the variables that
affect the response to an intervention we expect to work. Sometimes experiments
just don’t seem to work as we expect. A classic example of this is the effect of noise
on the development of tolerance to benzodiazepines. Normally, chronic treatment
with benzodiazepines results in tolerance developing to their anxiolytic and sedative
effects. However, a series of studies carried out during a period of laboratory
renovation failed to show this effect, and subsequent, more controlled studies
demonstrated that under conditions of noise stress, tolerance developed to the
sedative effects of benzodiazepines but not to their anxiolytic effects (File and
Fernandes 1994).

The second and third uses of positive controls have an element of quality control
about them. During drug development it is often necessary to compare a novel
substance with one that has already demonstrated an effect in the clinic or with the
lead substance of a competitor. This is particularly true when substances with similar
mechanisms of action are being studied. However, some caution should be used with
novel mechanisms of action. Experimental conditions are often ‘optimised’ to detect
known compounds, and this may reduce their ability to detect compounds with
novel mechanisms of activity. Models of anxiety provide some examples of this: all
anxiolytic tests detect benzodiazepines, for many years the only available treatment
for anxiety, but they are typically less responsive to putative anxiolytics with other
mechanisms of action such as 5-HT1A partial agonists (e.g. buspirone), which have
shown positive effects in the clinic but are inconsistent at best in animal models
(e.g. Moser 1989; Moser et al. 1990).

When the positive control does not work as expected, it is important to check
historical values to make sure that it is not the negative control that has produced an
aberrant response. In any such situation, it is important to be clear what we mean by
‘work’. Many drugs can have side-effects which are rate-dependent (e.g. increase
behaviour when activity is low but decrease it when activity is high) which could
mask or enhance another effect (e.g. Sanger and Blackman 1976). Being aware of
such possibilities in a particular experimental set-up can help you better understand
what has really happened in your experiment.

Finally, it is important that all the groups in the experiment are treated equally. By
that I mean they are an integral part of the initial experimental design, subject to the
same blinding and randomisation as other groups and included in the analysis of the
experiment. There can be a temptation to first analyse the positive and negative
controls using a simple two-group test and, if significant, to declare that the experi-
ment has worked. A subsequent multigroup comparison would then analyse the
effects of the test substance against the negative control. Such an analysis is not
comparing the effects of the positive control and the test substance under the same
conditions. This introduces a bias towards declaring experiments to have ‘worked’
(i.e. the positive control is significantly different compared to the negative control)
when a multigroup comparison including all experimental groups might be non-
significant. In some cases where the positive effect might be a unilateral lesion, the
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bias is aggravated by the use of a within-subject test to validate the experiment but a
between subject test to evaluate the test substance. Any such analysis that does not
include all experimental groups together should be viewed with caution.

5 Secondary Controls

5.1 Can Baseline Values Be Used as Control?

Baseline values can be very useful points of comparison, but they are not the same as
controls for a subsequent treatment or intervention. If we consider that controls are
designed to measure the impact of extraneous variables in an experiment, then the
baseline, by definition, cannot control for subsequent changes over time. Many
physiological parameters change over time, such as locomotor activity and body
temperature which show marked circadian variation (e.g. Moser and Redfern 1985).
There are also many other factors which can modify drug effects and which vary
over time, such as activity of metabolising enzymes (Redfern and Moser 1988).

These variations can modify the effects of drugs. This can be demonstrated by a
simple example of measuring body temperature. Rodent body temperature varies
over 24 h, with a trough during the light period and a peak during the dark period.
Depending on when we administered a drug during the day, we might conclude that
it either increased or decreased body temperature when compared against baseline
when, in reality, it has no effect (e.g. Redfern and Moser 1988). The opposite is also
possible: a real effect of the test substance could be masked or enhanced by the
circadian variation when compared against baseline.

Measurement of baseline values is often a first step in making experimental
groups homogeneous. It is essential that the groups be made as identical as possible
using suitable randomisation and the spread of baseline values should not be too
great. Stratified randomisation (e.g. Altman 1999) could be used if there is a wide
range of baseline values but it is very rare that experimental effects will be indepen-
dent of the baseline. Many drug effects are baseline- or rate-dependent such as drug
effects on locomotor activity (e.g. Glick and Milloy 1973), and there is always the
risk of effects being due to regression towards the mean (e.g. Morton and Torgerson
2005).

One common practice that uses baseline as a type of control value is the use of
‘change from baseline’ as the main variable. This can be useful when the underlying
variable has low variance (such as body temperature in untreated animals at a given
time of day) but dangerously confounding when the measure shows large variance
and regression towards the mean (such as locomotor activity in untreated animals at
a given time of day). Analysing original data or the change from baseline measure
can result in different statistical outcomes (e.g. Le Cudennec and Castagné 2014).
Change from baseline might be useful as an exploratory analysis but still needs very
careful interpretation: a repeat measures analysis would probably be an altogether
more satisfactory approach in most circumstances.
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Thus, under very specific conditions, the baseline can be used as a control value.
However, those conditions require that the baseline values be homogenous and with
low variance and that the experiment be carried out over a very short period of time.
This may be very restrictive for many types of study, but, when appropriate, the use
of baseline as control can be a good way to reduce the number of animals used in a
study and increase statistical power (in part due to the necessity for low variation
but also because of the use of within-subject statistics), both ethically desirable.

5.2 Historical Control Values

Like any group in an experiment, the control groups can give a spurious result
simply as a result of randomly selecting data from a population. Differences relative
to this control group could then be interpreted as an effect of treatment in the other
groups when in fact it is the control group that has created the difference. The
frequency of this occurrence can be limited by powering your study correctly, but it
may still happen from time to time. This can be controlled for in experiments that are
carried out frequently, such as screening studies, by comparing your control group
against historical controls.

As the objective of control groups is to provide a contemporaneous point of
comparison for your experimental treatment, it is clear that historical values cannot
fulfill all the functions of a control group. In particular, historical controls cannot
control for the possible impact of those unknown unknowns specific to a given
experiment. Indeed, it has been suggested that historical controls may be responsible
for the unreliable results obtained with some test substances in the SOD-1 model of
ALS (Scott et al. 2008) and Papageorgiou et al. (2017) have also demonstrated
how using historical controls instead of concurrent controls in clinical studies can
introduce bias.

At the same time, historical controls can provide an additional point of compari-
son to provide some validity for the experimental conduct. If your control values
deviate from historical reference values, it allows you to determine if the data may
be unreliable and potentially identify additional, previously unknown, variables that
help you to improve an experimental protocol. Contemporaneous controls are not
designed to provide a ‘true’ value that is somehow independent of the current study
but are there to allow you to evaluate your current study correctly.

However, under certain conditions or if you are prepared to relax some of the
requirements of a true control group and if you have a procedure that is regularly
used, there are situations where historical control values can be better than concur-
rent controls and integrated into your experiment.

One of these situations, which has a relatively long history, is in the context of
toxicology studies. For example, there are rare tumours that can occur spontaneously
in rats at a rate below that which is reliably detectable in any reasonably sized control
group. If such tumours are observed in a treated group, it is possibly only by chance,
but comparison with the control group, in which no such tumours occurred, will not
help determine if this is, or is not, the case. This is a serious issue in toxicology
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testing, and the Society for Toxicologic Pathology set up a Historical Control Data
Working Group to examine the issue in some depth. Their full discussion of the
issues and recommendations for best practice in the case of proliferative lesions in
rodents has been presented by Keenan et al. (2009). It is a similar story for in vitro
toxicity studies, such as the in vitro micronucleus test where historical controls are
regarded as important for evaluating data quality and interpreting potential positive
results, an approach enshrined in the OECD guidelines on genetic toxicology testing
(Lovell et al. 2018).

It has been suggested that for often-repeated studies historical controls could
potentially replace contemporaneous controls (e.g. Festing and Altman 2002).
Kramer and Font (2017) make a strong case for considering historical controls a
replacement for contemporaneous controls and present a number of simulations of
typical conditions showing how they could be effectively used to reduce animal
usage.

6 When Are Control Groups Not Necessary?

The short answer is almost never. However, there may be circumstances where rare
or anecdotal events can be reported as preliminary evidence for an effect. Two well-
known and somewhat tongue-in-cheek examples include the protective effects of
umbrellas against lion attacks (Anderson 1991) and parachute use to prevent injury
when falling (Smith and Pell 2003). Despite their humorous approach, both papers
make serious points, and the latter has been extensively cited as presenting a
situation analogous to some medical practices, in which the benefits of a treatment
are so obvious that they do not need testing. However, a recent analysis has found
that this analogy is frequently false: when actually evaluated in randomised con-
trolled clinical trials, only a modest proportion (27%) of such ‘obvious’ findings
showed a significant benefit (Hayes et al. 2018). Thus, even if you think the outcome
is so obvious that a proper control group is not necessary, be aware that you are more
likely than not to be wrong. Furthermore, if this is frequently true of clinical
hypotheses, I suspect that for non-clinical studies, it is likely to be true in almost
all cases.

7 Conclusion

Good control groups are the ground upon which your study stands. Without them,
who knows where you will fall.
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Abstract
Drug discovery research is a complex undertaking conducted by teams of
scientists representing the different areas involved. In addition to a strong
familiarity with existing knowledge, key relevant concepts remain unknown as
activities start. This is often an accepted risk, mitigated by gaining understanding
in real time as the project develops. Chemicals play a role in all biology studies
conducted in the context of drug discovery, whether endogenously or exo-
genously added to the system under study. Furthermore, new knowledge often
flourishes at the interface of existing areas of expertise. Due to differences in their
training, adding a chemist’s perspective to research teams would at least avoid
potentially costly mistakes and ideally make any biology research richer. Thus, it
would seem natural that one such team member be a chemist. Still, as that may not
always be the case, we present some suggestions to minimize the risk of irrepro-
ducibility due to chemistry-related issues during biology research supporting
drug discovery and make these efforts more robust and impactful. These include
discussions on identity and purity, target and species selectivity, and chemical
modalities such as orthosteric or allosteric small molecules or antibodies. Given
the immense diversity of potential chemical/biological system interactions, we do
not intend to provide a foolproof guide to conduct biological experimentation.
Investigate at your own peril!

Keywords
Antibodies · Biological hypothesis · Biologics · Chemical biology · Chemical
modalities · Chemical probes · Critical path · Identity · Purity · Quality of drug
discovery · Selectivity · Small molecule · Species selectivity

1 Introduction

Drug discovery research is a quintessential example of a team activity, given the
complexity and breadth of the many scientific areas involved. The integrity, quality,
and impact of new knowledge emerging from scientific research are based on
individual and collective adherence to core values of objectivity, accountability,
and stewardship (The National Academies of Sciences, Engineering, and Medicine
2017). This is of particular importance in life sciences and drug discovery, as we
strive simultaneously to develop new knowledge to enable new discoveries that lead
project teams to the invention of efficacious therapies that cause life-altering impact
on patients suffering from devastating diseases. Not a small task!

Drug discovery may become a very costly undertaking, and investments in an
ill-conceived strategy may be devastating for an organization, regardless of whether
they are industrial or academic, for-profit or nonprofit, or well-established or starting
up. Finding a causative relationship between a single drug target and a disease state
remains a formidable exercise in understanding human biology and pathophysiology.
As it is broadly acknowledged, significant knowledge gaps in these areas exist today.

Seeking to maximize the chances of success, every project in its conception is
linked to a biological hypothesis of disease: The exact pronunciation of the scientific
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basis of how a concept is thought to lead to disease treatment. During project
execution, teams aim either at disproving or adding support to such hypotheses. It
may be argued that every nonredundant, reasonable study designed to deliver
supporting evidence or rule out the central biological hypothesis must be conducted.
However, reality dictates that resources are always finite. As a consequence, teams
reduce the biological hypothesis to practice and define the smallest set of studies
required to provide appropriate de-risking levels (which vary with every one of us)
and support reasonably well the biological hypothesis, called the critical path.
Therefore, establishing a sharply defined biological hypothesis linking the target to
the disease is a key to framing the scope of the project team (Fig. 1).

The choice of the biological target linked to the disease to be treated is a necessary
– but not sufficient – condition for a successful project. Work on an ill-conceived
hypothesis or a poorly executed strategy will inevitably lead to a failure due to lack
of efficacy – barring serendipity. Thus, the work of most effective project teams will
find a way to deliver consensus-derived, logical, and sensible project milestones that
either establish evidence that argues against the biological hypothesis and recom-
mend the termination of the project or succeed in minimizing the risks moving
forward into clinical validation. The reader will realize that assuring clinical efficacy
is not within the realm of possible outcomes at this time.

Chemicals play a role in all biology studies conducted in the context of drug
discovery, whether endogenously or exogenously added to the system under study.
During the execution of the project’s strategy, multiple compounds will be acquired,
by either purchase or chemical synthesis, and studied experimentally to illuminate
the decisions made by project teams. These will be chemical probes, radioligands,
imaging agents, and drug candidates. Thus, while it would seem natural to enlist a
chemist as a team member, unfortunately that is not always the case for a number of
reasons. The chemist’s contributions are often incorrectly perceived as not adding
other values than providing the test article. While apparently adding efficiencies, this
separation of tasks limits the potential synergies across science disciplines, which are
key to develop new knowledge.

Be that as it may, this chapter aims to discuss some aspects of the qualification
that different compounds, as well as other research reagents and tools, would meet in
order to maximize the quality of the science and minimize the changes of misinter-
pretation of experiments. We do not intend to provide a foolproof guide to conduct
biological experimentation, since the diversity of potential chemical/biological sys-
tem interactions precludes us from such a goal.

Target-Disease 
Link

•Disease Z is caused 
by an excessive 
signal derived 
from increased 
concentra�on of 
endogenous 
compound M

Biological 
Hypothesis

•Func�onal 
antagonism of 
target A leads to 
reduc�on of signal 
elicited by M

•Reduced signaling 
will impact the 
course of disease Z

Cri�cal Path
•Reduc�on to 

prac�ce
•Define key studies 

required to 
provide 
appropriate de-
risking levels 

Results
•GO: Minimize risk 

of a�ri�on

•NO-GO: Disprove 
biological 
hypothesis

Fig. 1 Example of a biological hypothesis and its relationship to the target-disease link
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2 Drugs in the Twenty-First Century

The concept of “druggability” was introduced around the turn of the last century as a
way to qualify the perceived likelihood that a ligand could be found for a given
binding site in a biological target, and it was initially conceived thinking of small
molecules as drugs, generally compliant with Lipinski rule of 5 (Ro5), and proteins
as biological targets (Hopkins and Groom 2003; Workman 2003). Today, the
number and nature of chemical modalities that have led to the appropriate modu-
lation of pathophysiology for therapeutic use have increased remarkably. These
range, on one end of the spectrum, from small molecules designed with para-
meters increasingly beyond those set by the Ro5 [e.g., oxysterols (Blanco et al.
2018), cyclic peptides, millamolecular chemistry (millamolecular chemistry refers to
macrocycles with a molecular weight between 500 and 1,000 daltons), PROTACs
(Churcher 2017)] to molecular entities grouped under the name “biologics,” such as
antibodies, antibody-drug conjugates, peptides, and oligonucleotides.

With so many different chemical modalities having been incorporated into the
arsenal of scientists, it behooves drug discovery project teams to secure experimental
support, in the way of preponderance of evidence, for the concept that the drug is
acting according to the mechanism of action at the core of the biological hypothesis.
In other words, secure mechanistic evidence that the drug is doing its job “as
advertised.” This task includes a thorough characterization and qualification of the
chemical probes used during biology studies.

2.1 Chemical Tools Versus Drugs

Drug repurposing consists of the use of advanced clinical compounds or approved
drugs to treat different diseases. It takes advantage of work previously done on
the active pharmaceutical ingredient, leading to reduced development costs and
timelines, and has recently become an area of active interest (Doan et al. 2011).
Often drugs already in clinical use are used as chemical probes based on their
mode of action. It is important to note that having been approved by a regulatory
agency for clinical or veterinary treatment does not necessarily qualify a compound
as a high-quality chemical probe. For example, a chemical probe must meet very
high standards in terms of its selectivity toward a biological target. On the other
hand, for a drug aimed for clinical use, lack of selectivity for a molecular target
(known as polypharmacology) may not only not be an issue, but actually provide the
basis for its efficacy and differentiation from similar drugs.

3 First Things First: Identity and Purity

Where do the samples of chemical probes and drug candidates used for biological
testing come from? Historically, these compounds used to be synthesized by medic-
inal chemists at intramural laboratories. The final step before submitting newly made
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compounds for biological testing was to determine that their identity and purity were
within expected specifications.

Compound management departments collected these samples and were responsi-
ble for managing corporate compound collections that grew in size and structural
diversity over the years. They would also deliver compounds for testing to the
corresponding laboratory. This process ensured the right compound was delivered
in the right amount to the right destination.

However, things have changed. Most drug research organizations today take
advantage to some extent of external, independent, contract research organizations
(CROs) to synthesize the small molecules for their research activities or commercial
suppliers of compound libraries for their hit-finding activities. Indeed, a fair number
of start-up biotechnology organizations lack laboratories and conduct 100% of
their experimentation at off-site laboratories. Often, compounds travel thousands
of kilometers to reach their testing destinations after being synthesized. How does
one assure the identity of the compound used for testing is correct? How does all the
travel and manipulation impact the purity of the test article and its potential
degradation?

An obvious yet often overlooked step when requesting a chemical tool for a
biology study without the help of a trained chemist – who would typically commu-
nicate using unambiguous chemical structures – is to make sure the compound
ordered is the actual chemical intended to be used in the research. In other words,
unequivocal identification of the research tools, including their sources (if commer-
cial suppliers, include catalog number and batch number) and assays used in the
characterization of the compound, has a major impact on the reproducibility of
biological studies by providing a well-defined starting point.

Names given to chemicals may be ambiguous. Some drugs are given an official
generic and nonproprietary name, known as international nonproprietary name
(INN), with the exact goal of making communication more precise by providing a
unique standard name for each active ingredient, to avoid prescribing errors. How-
ever, most compounds used in research do not get to receive an INN from regulatory
agencies. For example, a SciFinder search for the chemicals “cholesterol” shows a
number of “other names” for it, while the drug known as Prozac™ (fluoxetine) has
more than 50 different names, some of them included in Table 1.

Using a compound’s Chemical Abstracts Service Registry Number (CAS RN) is
likely the best way to avoid errors communicating the name of a compound (https://
www.cas.org/support/documentation/chemical-substances/faqs). The CAS Registry
is considered the most authoritative collection of disclosed chemical substance
information, covering substances identified from the scientific literature from 1957
to the present, with additional substances going back to the early 1900s. This
database is updated daily with thousands of new substances. Essentially, a CAS
RN is a unique numeric identifier that may contain up to ten digits, divided by
hyphens into three parts. It designates only one substance. The numerical sequence
has no chemical significance by itself. For example, the CAS RN of cholesterol is
57-88-5. However, CAS RN are not fool proof either. For example, fluoxetine free
base and its hydrochloride salt have different CAS RN (54910-89-3 and 56296-78-7,
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respectively). Thus, it is recommended to consult with a chemist to avoid costly
mistakes.

In terms of assessing the purity of a chemical sample, a growing number of
organizations manage the on-demand syntheses of compounds at CROs by
designated medicinal chemists. These two teams must collaborate closely to support
project activities. Analogs made are not accepted for delivery unless extensive
characterization with unambiguous analytical data exists consistent with the correct
chemical structure and purity (often referred to as Certificate of Analysis or CoA).
Typically, an elemental analysis is provided, which should be consistent with the
compound molecular formula within experimental error, as well as a set of ultravio-
let (UV), infrared, H-1 or C-13 nuclear magnetic resonance spectra, and a chro-
matographic trace with different detection methods (e.g., total ion current, UV
absorption). Appearance (oil, powder, crystal, color) and expected purity (as a %)
are also stated.

Catalog chemicals, acquired either as singletons or as part of compound libraries,
are previously made and are not always accompanied by a current CoA or set of
spectroscopic data. The reasons for this vary. So we would rather focus on ways to
make sure the compound being tested is the right one.

Furthermore, compound management is also available from CROs, either at the
synthesis site or not. Compounds bought are received, barcoded, stored, weighed,
cherry-picked, and shipped for testing. When compound management occurs at
extramural organizations requiring shipping or when the last chemical analysis
was done some time in the past (e.g., a year), it is strongly recommended that before
testing quality control be conducted to confirm that the compound’s identity is

Table 1 Different names for cholesterol (left) or Prozac™ (right) found in SciFinder

Cholesterol (8CI) Benzenepropanamine, N-methyl-γ-[4-(trifluoromethyl)phenoxy]-,
hydrochloride (9CI)

(3β)-Cholest-5-en-3-ol (�)-N-Methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]
propylamine hydrochloride

(�)-Cholesterol Affectine

3β-Hydroxycholest-5-ene Deproxin

5:6-Cholesten-3β-ol Fluoxac

Cholest-5-en-3β-ol Fluoxeren

Cholesterin Fluoxetine hydrochloride

Dythol Fluoxil

Lidinit LY 110140

Lidinite Lilly 110140

NSC 8798 N-Methyl-3-(4-trifluoromethylphenoxy)-3-phenylpropylamine
hydrochloride

Marine cholesterol N-Methyl-3-[4-(trifluoromethyl)phenoxy]-3-phenylpropanamine
hydrochloride

Cholesteryl alcohol Profluzac

Provitamin D Prozac

SyntheChol Prozac 20

Δ5-Cholesten-3β-ol . . . etcetera
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correct and its purity is within acceptable levels, ideally similar to those obtained
when the sample was originally synthesized.

3.1 The Case of Evans Blue

Evans blue (1) is a chemical used to assess permeability of the blood–brain barrier
(BBB) to macromolecules. First reported in 1914 (Evans et al. 1914; Saunders et al.
2015), this compound is extensively used for mechanistic studies seeking to interro-
gate the structural and functional integrity of the BBB. The basic principle is that
serum albumin cannot cross a healthy BBB, and virtually all Evans blue is bound
to albumin, leaving the brain unstained. When the BBB has been compromised,
albumin-bound Evans blue enters the central nervous system (CNS), generating
a typical blue color (Fig. 2). However, a reappraisal of the compound properties
(as available from commercial sources, Fig. 3) under the scrutiny of modern
techniques reveals caveats. For example, one source lists the chemical purity as
75%, with an elemental analysis differing significantly from the theoretical one, and
with a variable solid state nature (crystal, amorphous) (www.sigmaaldrich.com/life-
science.html). Differences between crystalline states may impact drug solubility, and
the presence of up to 25% of unknown impurities introduces random factors in
experiments conducted with this material. These factors are not aligned with experi-
mental best practice and may be easily corrected by a skillful chemist in a research
team.

NH2 OH

SO3Na

NaO3S N
N

N
N

OH NH2

SO3Na

SO3Na

1

The purity of the reagents used in biology research is highly linked to their quality
and reproducibility. For example, lipopolysaccharides (LPS) are large molecules
found in the outer membrane of Gram-negative bacteria. Chemically, they are a
mixture formed by a diversity of lipids and polysaccharides joined by a covalent
bond (Moran 2001). LPS is a microbe-associated molecular pattern that potently
activates innate immune cells. Peripheral administration of LPS is used as an
immunological challenge in animal models of inflammation. However, commer-
cially available samples of LPS are subject to significant variability and typically
display a range of potencies, in part due to the wide range of possible methods used
to purify LPS (Darveau and Hancock 1983; Johnson and Perry 1976; Apicella

Quality of Research Tools 125

http://www.sigmaaldrich.com/life-science.html
http://www.sigmaaldrich.com/life-science.html


2008). Indeed, some preparations may contain large amounts of nucleic acid
contaminants, which activate different innate immunity receptors, resulting in dif-
ferent biological effects. This causes variability in the results from biological studies
using LPS, limiting their utility (Ray et al. 1991; Lee et al. 2013). A superior form of
LPS for biological research is Control Standard Endotoxin (CSE), which is an LPS
preparation whose activity is standardized using coagulation of horseshoe crab blood
cells as a functional assay. Indeed, analysis of mouse brain and plasma cytokines and

Fig. 3 Example of technical sheet for a commercial sample of Evans blue

Fig. 2 A rodent brain showing the effects of Evans blue staining
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kynurenine pathway metabolites isolated upon CSE treatment suggests
improvements in the quality of results over LPS in an in vivo neuroinflammation
model (Lee et al. 2013).

Even when the purity and identity of compounds used in testing are assessed right
after synthesis, some may deteriorate over time. This is true for solid samples, as well
as those stored as solutions in dimethyl sulfoxide (DMSO). Cycles of freezing and
thawing exacerbate deterioration, especially if the sample is exposed to air. For
example, the arylpiperazine 2 was thought to be a hit in a high-throughput screen
conducted to find melanin-concentrating hormone receptor 1 (MCHR1) antagonists.
However, upon confirmation of the hit via resynthesis, it was discovered that the
actual structure of the compound was 3 (Tarrant et al. 2017). The reason for this was
that at the end of the preparation, compounds were isolated by precipitating them as
their hydrobromide salts and then stored in DMSO at a 10 μM concentration.
However, in the presence of oxygen (from the air), the thawed solutions reacted
according to the chemical reaction shown in Fig. 4.

In summary, confirming the identity and the purity of all compounds used in any
experiment is a simple and necessary step to get the most out of the efforts, conduct
rigorous scientific experimentation, and avoid costly mistakes.

3.2 Identity and Purity of Research Reagents

Not only is it important to unequivocally confirm the identity and purity of
compounds, but it is essential to do the same for all the biological tools used in
studies. For in vitro work, cell lines should be authenticated for their identity and
lack of mycoplasma infection. It is surprisingly common in research for scientists to
work on cell lines that are not what they think they are, resulting in spurious
published reports, irreproducible data, and wasted resources (Chatterjee 2007;
Drexler et al. 2002; Masters 2000). In a notorious set of studies, it was found that
a large proportion of cell lines being used worldwide were HeLa cells (Nelson-Rees
et al. 1974, 1981), the first human cancer cell line developed. In other studies, of cell
lines submitted for banking, 17–36% were found to be different from what was
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Fig. 4 Transformation of arylpiperazine 2 as an HBr salt into bromopiperazine 3 during storage
(Moran 2001)
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claimed and were even of a different species (Markovic and Markovic 1998;
MacLeod et al. 1999). The identity of cell lines can be evaluated by microscopic
evaluation, growth curve analysis, and karyotyping. However, the most definitive
test to confirm a cell lines identity is to perform DNA fingerprinting by short tandem
repeat profiling (Masters 2000; MacLeod et al. 1997). This service is provided by a
number of CROs.

In order to ensure reproducibility of published work, it is important to include all
details of the cell culture experiments. This includes the source of any cell line used,
including suppliers and catalog numbers, where applicable. It may also be relevant
to specify the range of passage numbers used in experiments, as this may affect
functional outcomes (Briske-Anderson et al. 1997; Esquenet et al. 1997; Yu et al.
1997; Wenger et al. 2004). The same applies to all culture conditions, including
seeding density, time of culture, media composition, and whether antibiotics
are used.

Another common pitfall in cell biology research is infection of cells by myco-
plasma (Drexler and Uphoff 2002). Mycoplasma are a genus of bacteria that lack a
cell wall and are resistant to common antibiotics. Mycoplasma infection can affect
cell behavior and metabolism in many ways and therefore confound any results
(Drexler et al. 2002; Kagemann et al. 2005; Lincoln and Gabridge 1998). Myco-
plasma are too small to detect by conventional microscopy and are generally
screened for in laboratories by DNA staining, PCR, or mycoplasmal enzyme activity
(Drexler and Uphoff 2002; Lawrence et al. 2010). This should be done routinely, and
with the availability of rapid kits it is relatively painless and cost-effective.

Many people use antibiotics in cell culture. However, it is a better practice to
avoid antibiotics. Antibiotics mask errors in aseptic technique and quality control
and select for antibiotic-resistant bacteria, including mycoplasma (Lincoln and
Gabridge 1998). Furthermore, small quantities of bacteria killed by antibiotics
may still have effects on cells due to microbe-associated molecules, such as LPS,
that are potent activators of innate immune cells (Witting and Moller 2011).

For in vivo work, care should be taken to ensure that the correct mouse strains and
lines are being used. Full genetic nomenclature and sources should be tracked
and reported. Mouse strain can differ substantially depending on which vendor it
is obtained from due to spontaneous mutations and founder effects. For instance, it
was discovered that the commonly used C57BL/6J inbred mouse strain from one
vendor contained a spontaneous deletion of the gene for α-synuclein, while the same
strain from another vendor did not (Specht and Schoepfer 2001). Mutations in
α-synuclein are a genetic cause of Parkinson’s disease, and many researchers in
the field had been inadvertently using this strain, possibly confounding their results.

4 Drug Specificity or Drug Selectivity?

First off: drugs and chemical probes do not act specifically at any target. They can’t
be, as even high-affinity drugs, at some concentration will start interacting with
secondary targets. So, at best, some compounds are “highly selective.”
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Typical ways to establish selectivity of a compound against a number of
antitargets or subtypes are based on in vitro assays where individual test articles
are tested for measures of binding affinity or functional activity at a target. The
selectivity at a given target is usually qualified by the ratio between quantitative
measures of drug effects at such targets. A fair number of these panels are available
from commercial organizations, as well as government-funded agencies and aca-
demic institutes. However large as the number of such counterscreens may be, there
are always targets that remain unknown or cannot be tested or modalities for which
the in vitro test does not exist. For example, depending on the magnitude of their
binding cooperativity, a compound may or may not show a signal competing with
the orthosteric ligand in a radioligand binding assay because it binds to an allosteric
site. In this case, a functional screen might appear to be a better choice
(Christopoulos and Kenakin 2002). However, ruling out the possibility the com-
pound acts as a silent allosteric modulator would require the combination of binding
and functional screens. These may not always be available off-the-shelf, thus
requiring additional research (Gregory et al. 2010).

Second, the selective actions of a compound depend on the concentration at
which the test is conducted. This is a particularly significant issue when using cell-
permeable chemical inhibitors to explore protein function, such as protein kinase
inhibitors. In this area, determining compound selectivity is a difficult undertaking
given the large number (>500) of such proteins encoded by the human genome and
the highly conserved ATP binding site of protein kinases, with which most inhibitors
interact. Due to the high importance of this field, a fairly large number of such
inhibitors have become available from commercial suppliers and, most notably,
offered online by academic organizations (http://www.kinase-screen.mrc.ac.uk/;
http://www.chemicalprobes.org/; https://probeminer.icr.ac.uk/#/). Often, claims of
“specificity” made for a compound toward a given kinase tested using broad panels
have shown to be unrealistic, leading to erroneous conclusions regarding the partici-
pation of a kinase in a certain mechanism. Suggested criteria have been proposed for
publication of studies using protein kinase inhibitors in intact cells (Cohen 2009).
These include screening against large protein kinase panels (preferably >100),
confirming functional effects using inhibitors in at least two distinct structural
chemotypes, demonstrating that the effective concentrations are commensurate
with those that prevent phosphorylation of an established physiological target,
meaningful rank ordering of analogs, and replication at a different laboratory. For
example, let’s say compound A inhibits kinase X with an intrinsic affinity Ki ¼ 1 nM
and a 1,000-fold selectivity over undesired antitarget kinase Z (Ki’ ¼ 1 μM).
Conducting an in vitro study in a comparable matrix at inhibitor concentration of
30 nM will selectively occupy the binding site of target X over the antitarget Z, and
the effects measured may be considered as derived from kinase X. On the other hand,
conducting the same study at inhibitor concentration of 10 μM will produce results
derived from inhibiting kinases X (completely) and Z (highly) (Smyth and Collins
2009).

It is important to understand that therapeutic drugs used in the clinic do not need
to be selective. Indeed, most are not, and the effects derived from cross-reactivity
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may even be beneficial to the therapeutic properties. However, during target identi-
fication and validation efforts, where a biological hypothesis is under examination,
the risk of misinterpreting observations from a study due to cross-reactivity issues
can easily be de-risked. In spite of efforts from the chemical biology community, a
recent publication discusses the evidence of widespread continuing misuse of
chemical probes and the challenges associated with the selection and use of tool
compounds and suggests how biologists can and should be more discriminating in
the probes they employ (Blagg and Workman 2017).

5 Species Selectivity

The term species selectivity refers to the observation that the effects of a compound
may vary depending on the biological origin of the system where the test is
conducted. The mechanistic origin of the observed differences may vary, including
virtually every aspect of drug discovery, from lack of binding to the biological target
due to differences in amino acid sequence, differences in nonspecific binding to
matrix components, dissimilar drug absorption, stability to matrix components (e.g.,
plasma hydrolases) or drug metabolism by homologous (or even not expressed)
proteins like cytochrome P450 or aldehyde oxidase, or simply differences in physi-
ology across species (e.g., Norway rats vs. aged C57BL/6J mice) or even strains of
the same animal species (e.g., Wistar vs. Sprague Dawley rats).

5.1 Animal Strain and Preclinical Efficacy Using In Vivo Models

Pharmacological responses to the action of a compound or the efficacious range of
doses or exposures linked to effects observed during in vivo studies in preclinical
species may vary when different strains of the same species are used. For example,
C57BL/6J mice showed greater preference for saccharin and less avoidance of a
cocaine-paired saccharin cue when compared with DBA/2J mice (Freet et al. 2013a).
And in studies using opioid agonists in mice and rats, strain differences in
the nociceptive sensitivity have been reported (Freet et al. 2013b). Wistar and
Sprague-Dawley are most frequently the rat strains chosen in life sciences research,
yet other outbred or inbred strains are sporadically used (Freet et al. 2013b; Festing
2014). A systematic study was recently conceived to evaluate the impact of rat strain
(Lewis, Fischer F344, and Wistar Kyoto), as well as other important parameters,
such as investigator, vendor, and pain assay, on the effects of morphine, a broadly
studied analgesic used as a prototype in this work. Three experimental protocols
were studied: hot plate, complete Freund’s adjuvant (CFA)-induced inflammatory
hyperalgesia, and locomotor activity. Findings revealed strain- and vendor-
dependent differences in nociceptive thresholds and sensitivity to morphine – both
before and after the inflammatory injury. The authors conclude that the translational
value of work conducted using a specific strain or preclinical model is limited and
propose ways to mitigate this risk (Hestehave et al. 2019).
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5.2 Differences in Sequence of Biological Target

Modifications in the chemical nature of the building blocks of a target receptor may
lead to major differences in the biological activity of chemical probes – affinity or
efficacy. Best known examples come from the area of small molecules acting at
protein targets. Such alterations may be due to mutations and manifest themselves as
loss-of-function or gain-of-function mutations. For example, autosomal dominant
inherited mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are
the most common genetic causes of Parkinson’s disease (Rideout 2017), while some
have been linked to rare diseases (Platzer et al. 2017).

Species selectivity is a significant, yet not unsurmountable, challenge to drug
discovery programs. For example, receptors in the purinergic family (including the
adenosine (ARs), P2Y, and P2X receptors) are notorious for their proclivity to
display reduced activity in rat compared with mouse or human receptors. Subtype
selectivity values reported for some of the early tool compounds were revised
following thorough pharmacological characterization across preclinical species.
For example, tool compound 4, broadly used to study the activation of the A2A

AR, has high AR subtype selectivity in rat and mouse, but it is reduced at human
ARs (Jacobson and Muller 2016).
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These observations are not rare, unfortunately. This suggests that best practice
requires alignment and consistency when testing the activity for drug candidates or
tool compounds using receptors corresponding to different relevant species and
highlights the risk of extrapolating biological activity across species without proper
experimental confirmation.

5.3 Metabolism

Lu AF09535 (5) is an mGluR5 negative allosteric modulator studied for the potential
treatment of major depressive disorders. During early clinical development, an
unanticipated low exposure of the drug was observed in humans, both by conven-
tional bioanalytical methods and the highly sensitive microdosing of 14C-labeled
drug. This observation was attributed to extensive metabolism through a human-
specific metabolic pathway since a corresponding extent of metabolism had not been

Quality of Research Tools 131



seen in the preclinical species used (rat and dog). A combination of in vitro and
in vivo models, including chimeric mice with humanized livers compared with
control animals, showed that aldehyde oxidase (AO) was involved in the biotrans-
formation of Lu AF09535 (Jensen et al. 2017). There is no equivalent protein to AO
expressed in rat or dog. Cynomolgus monkey has been recommended as a suitable
surrogate to study potential human AO metabolism (Hutzler et al. 2014).
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6 What We Dose Is Not Always Directly Responsible
for the Effects We See

Often during research using chemical tools, especially during in vivo studies, the
experimental observations are interpreted as derived from the compound being
dosed. However, this is not always the case, and thorough research requires
establishing this direct link between the parent compound and the biological target
in agreement with the hypothesis under testing.

As an example, compound 6 is an MCHR1 antagonist with potent in vitro
activity. When tested in vivo in a sub-chronic diet-induced obesity model (DIO),
it showed efficacy. However, a metabolite identification study indicated that
significant amounts of primary alcohol 7 remained in circulation. Alcohol 7 was
synthesized and it demonstrated potent in vitro inhibition of MCHR1 effects. In
vivo, rat pharmacokinetics was very good and the compound crossed the BBB. As
anticipated, when tested in a DIO model, it showed efficacy superior to its methoxy
precursor 6. Given its favorable physicochemical properties, compound 7 became
NGD-4715 and reached Phase 1 clinical tests before being discontinued due to the
observation of mechanistic effects altering sleep architecture (Moran 2001).
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Furthermore, for compounds that are “well-behaved,” the unbound con-
centrations measured at the hypothetical site of action should be commensurate
with affinity or efficacy obtained using in vitro binding or functional assays. It
must be reminded that, at the end of the day, these drug concentrations represent a
certain receptor occupancy, which is expected to be consistent across different tests
used to assess, and ideally translate, to the clinic.

Oftentimes these relationships are visualized through “exposuregrams,” graphics
where efficacious different in vitro, ex vivo, and in vivo tests are compared (Fig. 5).

6.1 Conditions Where In Vitro Potency Measures Do Not Align

Occasionally, in vitro measurements of compound potency derived using recombi-
nant receptor protein will not overlap perfectly with those obtained using a cellular
matrix. Due to the increased chemical and structural complexity of the cellular assay
matrix compared with the recombinant milieu, often lower potency measures are
determined. These tend to be attributed to poor cell membrane permeability, reduc-
tion in unbound concentrations due to increased nonspecific binding, or simply
differences in concentrations of relevant binding partners between the two assays
(e.g., ATP concentrations too high for kinase inhibitors).

On the other hand, occasionally a compound’s potency increases in a cellular
matrix compared with the recombinant assay. This rare effect may be explained by
the formation of active drug metabolites or posttranslational modifications (cellular
systems are metabolically able), the existence of unknown protein�protein
interactions (purified recombinant systems ignore cellular localization and avoid
contacts with other cell components such as proteins or nucleic acids), or intracellu-
lar localization of compound driven by transporter systems. Interpretation of these
shifts is not always feasible, as target occupancy is not routinely established in
cellular assays. For the case of allosteric drugs, a left shift in a cellular system
suggests the presence of an endogenous component with positive cooperativity with
the test article.

7 Chemical Modalities: Not All Drugs Are Created Equal

Target de-risking efforts benefit from experimentation with chemical tools of differ-
ent nature. Due to advances in technology, probe compounds belonging to the group
of biologics (e.g., proteins, oligonucleotides) tend to be faster to develop up to a
quality good enough to conduct early testing of the biological hypothesis. On the
other hand, developing a small molecule with the desired activity at the target and
selectivity against antitargets usually requires a significant investment of financial
and human resources. Table 2 compares some of the characteristics of these chemi-
cal modalities.
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8 Receptor Occupancy and Target Engagement

As discussed in the introduction, the ultimate test of any drug discovery project is the
exploration of the clinical hypothesis in humans. Ideally, the drug will show efficacy
and safety and eventually become marketed. However, most drug discovery projects
fail to meet these objectives. The second best outcome is then being able to rule out
the biological hypothesis. Logically, this requires, at a minimum, being able to
demonstrate sufficient clinical receptor occupancy (i.e., the drug is binding to the
biological target in the tissue linked to the pathophysiology) at the site of action and
ulterior target engagement (i.e., the expected functional effects derived from receptor
occupancy are seen).

Oftentimes target engagement is inferred from a functional observation in a
biological system upon treatment with a probe compound. This may be reasonable
when studying systems with extensive prior biochemical or behavioral phenotype
knowledge. However, when conducting research on novel biological systems and
targets, an actual determination of the degree of receptor occupancy provides a much
more robust line of support to conclude that the phenotype observed is produced by a

Table 2 Some characteristics of small-molecule drugs and biologics

Small-molecule drugs Biological drugs

Size – Small (single molecule)
– Low molecular weight (up to
around 1,000 amu)

– Large (mixture of related molecules)
– High molecular weight
(>>1,000 amu)

Structure Simple, well defined,
independent of manufacturing
process

Complex (heterogeneous), defined by
the exact manufacturing process

Modification Well defined Many options

Manufacturing – Produced by chemical
synthesis
– Predictable chemical process
– Identical copy can be made
– Low cost of goods

– Produced in living cell culture
– Difficult to control from starting
material to final API
– Currently very difficult to ensure
identical copy
– High cost to produce

Characterization Easy to characterize completely
at chemical and physical levels

Not completely characterized in terms
of chemical composition and
heterogeneity

Stability Relatively stable Relatively unstable, sensitive to external
conditions

Immunogenicity Mostly non-immunogenic Immunogenic

Brain
penetration

Ways to establish brain
penetration and receptor
occupancy are well understood

Bifunctional antibodies developed for
brain targets; for other types of
biologics, establishing brain target
engagement is still a challenge

Plasma half-life Usually hours From days up to months

Dosing regime Mostly 1–2 times a day May be longer than a month

Adapted from Doller (2017)
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molecular interaction between the test article and the receptor. For example, GPCR
antagonists or agonists may elicit their functional effects (functional inhibition or
activation, respectively) at very different degrees of receptor occupation. For the
former, receptor occupancy typically parallels level of inhibition of a receptor,
whereas agonists may exert functional effects occupying a very small fraction of a
receptor (Michel and Seifert 2015), sometimes so low that it is hard to measure
practically after consideration of the experimental error (Finnema et al. 2015).

9 Radioligands and PET Ligands as Chemical Tools

Chemical tools labeled with radioactive atoms are often used in drug discovery
projects in a number of tasks, including binding affinity measurements, drug phar-
macokinetics, ex vivo or in vivo receptor occupancy, or BBB permeability, among
other uses.

PET agents are generally synthesized containing carbon-11 (t½ ¼ 20.4 min)
and/or fluorine-18 (t½ ¼ 109.7 min) as radioisotope. Radioligands most often
contain tritium (t½ ¼ 12.3 years), carbon-14 (t½ ¼ 5,730 years), phosphorous-32
(t½ ¼ 14 days), sulfur-35 (t½ ¼ 87 days), or iodine-125 (t½ ¼ 60 days).

As explained for “cold” chemical tools (non-radiolabeled), it is important to
understand that there is no hierarchy established between different types of
radioligands. Each tool is designed with a fit-for-purpose mentality. In other
words, a great human PET agent may or may not be acceptable for preclinical use,
and the short half-life would most likely preclude its use as, for example, a
radioligand binding assay.

Criteria have been developed to aid the discovery of high-quality novel PET
ligands based on the physicochemical properties, brain permeability, and nonspecific
binding for 62 clinically successful PET ligands and 15 unsuccessful radioligands
considered as controls for undesired properties (Zhang et al. 2013). Properties
chosen in this analysis are cLogP, cLogD, MW, TPSA, HBD, and pKa. It should
be taken into consideration that this is just one approach to PET ligand design
developed by one research group. Different approaches have been tested with
successful results too. Target localization in the brain and its specific identity are
important parameters to consider (Van de Bittner et al. 2014). Non-labeled ligands
have also been used to measure in vivo receptor occupancy taking advantage of the
increasing sensitivity of liquid chromatography coupled to mass spectrometry
methods (LC-MS/MS). In a retrospective analysis, brain penetration, binding poten-
tial, and brain exposure kinetics were established for a number of non-labeled PET
ligands using in vivo LC-MS/MS and compared with PET ligand performance in
nonhuman primates and humans (Joshi et al. 2014).

A key parameter in the quality of a PET ligand is its selectivity at the biological
target of interest. Best practice requires that this selectivity be thoroughly established
using in vitro tests first and in vivo systems afterward to minimize the risk of
misinterpreting experimental observations. An interesting example was recently
reported for validation studies for the compound [11C]-JNJ-42491293 (8), a PET
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ligand candidate to study the metabotropic glutamate 2 receptor (mGluR2), a drug
target for CNS diseases (Leurquin-Sterk et al. 2017). Compound 8 has high affinity
for the human mGluR2 receptor (IC50 around 9 nM). Preclinical studies conducted in
Wistar rats demonstrated moderate brain penetration followed by distribution in
brain regions consistent with those expected based on known expression of mGluR2.
However, an additional unexpected observation indicated high retention in heart
tissue. In order to explore this issue, the team conducted comparative PET studies
using wild-type rats with their mGluR2 knockout counterparts. These studies
indicated off-target binding in vivo to a yet-unidentified molecular target and
highlight the importance of conducting in vitro and in vivo comparative studies to
conduct a rigorous validation of PET radioligands.
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10 Monoclonal Antibodies as Target Validation Tools

Monoclonal antibodies (mAbs) offer a compelling alternative to small molecules as
tools in support of target validation. mAbs can potentially be generated with high
affinity and selectivity against targets of interest with relative speed compared to
small molecules. mAbs also have an advantage over small molecules, as they have
the potential to disrupt thermodynamically stable large molecule interactions. While
this effect has also been accomplished by small-molecule allosteric modulators, the
task of compound optimization may be complex (Watson et al. 2005). In vivo, mAbs
generally exhibit much longer half-lives than small molecules and therefore may be
more practical in long-term target validation experiments as they can be
administered infrequently.

While mAbs are usually used as antagonists to test the target of interest, it is also
possible to generate agonistic mAbs. The use and potential challenges of immune
agonist antibody design and their development as potential therapies for cancer
treatment have been reviewed (Mayes et al. 2018).

10.1 Targets Amenable to Validation by mAbs

Since antibodies are large molecules normally secreted by B cells into the circula-
tion, the target repertoire of mAbs is traditionally thought to be confined to
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extracellular or cell surface proteins. In more recent years, it has become apparent,
somewhat surprisingly, that mAbs may also possess the ability to target intracellular
proteins, including cytosolic proteins. The mechanism for this is still unclear, as
mAbs exist in a topologically distinct compartment from the cytosol. Many cells
express receptors for the Fc constant region of antibodies, allowing their uptake into
the endolysosomal compartment of the cell. Certain cytosolic antigens may be
targeted to the endolysosomal compartment by autophagocytosis. For instance,
this may be true for the neuronal protein, tau, which aggregates and becomes
targeted for autolysosomal degradation in the pathological state (Congdon et al.
2013; Sankaranarayanan et al. 2015).

In addition, cells express a high-affinity Fc receptor in the cytosol called TRIM21,
which is important in mediating intracellular immunity against viral infections
(Mallery et al. 2010). TRIM21 also contains a ubiquitin ligase domain, allowing
antigen/antibody complexes to be targeted to the proteasome for degradation. Anti-
body tools may be used to target endogenous proteins for degradation by this
pathway in target validation experiments (Yanamandra et al. 2013). The mechanisms
by which mAbs enter the cytosol remain poorly understood.

10.2 The Four Pillars for In Vivo Studies

The concept of the four pillars of drug action (Bunnage et al. 2013) applies to
antibodies as well as small molecules. For a soluble target, it is important to
determine the concentration of the target in the target tissue, as well as the soluble
(“free”) fraction of the antibody achieved in that tissue. The free mAb concentration
must significantly exceed the affinity of the mAb for its targets in order to ensure that
the target is saturated by the mAb. For a cell surface target, it should be determined
whether the target is released from the cell as part of the disease process. The soluble
form of the target could act as a sink to sequester the mAb, and this will
not necessarily be measurable by determining mAb concentration in the tissue of
interest. Similarly, if the cell surface target is internalized upon mAb binding, this
could rapidly deplete the mAb. However, this could be determined in an appropriate
pharmacokinetic time-course dose-response study.

Another potential challenge is the development of immunogenicity to the mAb.
That is, the host may raise antibodies against the test mAb, thereby neutralizing its
activity and efficacy. Therefore, it is necessary to monitor an immune response
against the biologics, particularly if no efficacy is observed. To reduce the risk of
immunogenicity, the host of the test mAb should be the same species as the animal
model (i.e., a mouse mAb should be used in a mouse model, but not a rat model, and
vice versa).
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10.3 Quality Control of Antibody Preparation

There are a variety of methods by which antibodies can be generated and purified.
mAbs may be produced by hybridoma clones or by recombinant expression in an
immortalized cell line. Purification of mAbs from supernatants can be performed
with Protein A or G affinity columns and/or by size-exclusion chromatography
(SEC). mAbs purified by Protein A/G columns alone may not be completely pure,
as additional serum proteins may stick to the columns or antibodies. Furthermore, if
regular serum is used to grow the cells, the Protein A/G column will also bind to the
endogenous antibodies in the serum. This will make it more difficult to determine the
concentration of the antibody of interest. Another potential pitfall is leaching of
Protein A/G into the antibody preparation. This should be addressed directly.

SEC-purified antibodies are generally purer and more reliable. Not only does
SEC separate mAbs from other contaminants but also allows for the purification of
mAb monomers away from potential mAb aggregates. Aggregated antibody can
potentially lead to artifacts, perhaps due to increased avidity for low-affinity
antigens. This could result in off-target reactivity in binding assays (e.g.,
immunohistochemistry, ELISA) or even in in vitro or in vivo functional assays.

Another very important contaminant to consider is LPS or endotoxin. As
discussed above, endotoxin is a component of the Gram-negative bacteria cell
wall and a potent activator of mammalian immune cells. Sterilization does not
remove endotoxin, so unless equipment and reagents are expressly endotoxin
(or “pyrogen-”)-free, antibody preparations may contain endotoxin, even if sterile
(Witting and Moller 2011; Weinstein et al. 2008). Endotoxin will certainly interfere
with any immune-based endpoints and may also affect other endpoints in vivo, such
as cognitive or motor tests, if the animal is suffering from inflammation-induced
sickness behavior (Weinstein et al. 2008; Remus and Dantzer 2016).

10.4 Isotype

The choice of antibody isotype may profoundly impact the efficacy of an antibody in
a validation experiment. Different isotypes have different effector functions due to
their differential effects on Fcγ receptors (Jonsson and Daeron 2012; Wes et al.
2016). Engaging Fcγ receptors trigger a variety of cellular responses, such as
phagocytosis and proinflammatory cytokine release. In some cases, effector function
is needed in order to see efficacy, such as when clearance of the antigen by immune
cells is desirable. In other cases, effector function is not important, such as when the
antibody effect is driven by occluding interaction of a ligand with its receptor.
Effector function may also confound interpretation of results by causing an inflam-
matory response at the site of action. In these cases, using effector function null
antibodies may be desirable.

It is important to ensure that any effect of the antibody is not due to effector
function rather than engagement of the antigen. For instance, if the mAb target is
expressed on an immune cell that also expresses Fcγ receptors, modulation of the
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cell may be via the Fcγ receptor rather than the target. Therefore, negative control
antibodies should always be of the same isotype.

10.5 Selectivity

In order to correctly interpret a target validation experiment using a mAb, it is of
course critical to use a mAb that is highly selective for the target. Selectivity is often
determined by testing the antibody on a Western blot following SDS-PAGE and
observing a band of the correct size. However, SDS-PAGE Western blots detect
denatured proteins, and therefore there may be additional proteins that the antibody
recognizes in the native state. Also, a band of the correct size is not definitive proof
that the band is the target of interest. One approach to test for specificity is to
compete the signal using peptides of the antigenic sequence. However, cross-
reactivity may be due to a shared epitope, and an antigen peptide may compete
this out as well. The best control is to test the antibody in a knockout animal or, if not
available, ablate the target in cells using CRISPR, shRNA, or other knockdown
technologies. Indeed, there have been examples of mAbs that recognized a band of
the correct size on a Western blot, but when knockouts of the target became
available, the band did not disappear. The best approach to be sure that you are
correctly interrogating the target of interest is to use to multiple independent mAbs,
ideally with different epitopes, against your target.

GPCRs, ligand-gated ion channels (LGICs), and transporters are key cell
membrane-bound biological targets often studied for a number of potential CNS
treatments. Biological research with these receptors often uses antibodies targeting
them, even though their usefulness has been questioned on the basis of their
selectivity. An increasing number of reports suggest lack of selectivity for a number
of GPCRs and LGICs, including those from commercial sources (Michel et al. 2009;
Berglund et al. 2008). Two often-applied criteria to assess antibody selectivity are
the disappearance of staining upon addition of blocking peptide and observing
distinct staining patters in tissues when testing antibodies against different receptor
subtypes. While reasonable, these may be insufficient to assert antibody selectivity.
Criteria thought to be reliable enough to demonstrate selectivity of GPCR antibodies
have been proposed:

1. The staining disappears in immunohistochemical studies or immunoblots of
tissues from genetic animals not expressing the receptor.

2. A major reduction of staining by a given antibody when using animals or cell
lines treated with genetic tools to knockdown expression of a given receptor.

3. The target receptor yields positive staining when using transfection of multiple
subtypes of a given receptor into the same host cell line, and it does not in the
related subtypes.

4. Multiple antibodies against different epitopes of a GPCR (e.g., N-terminus,
intracellular loop and C-terminus) show a very similar staining pattern in
immunohistochemistry or immunoblotting (Bradbury and Plückthun 2015). The

140 D. Doller and P. Wes



issue of antibody quality and its impact on reproducibility of biological studies
seem to be rather broad.

A report from 2008 states that less than half of ca. 5,000 commercial antibodies
acted with the claimed selectivity at their specified targets. In addition, some
manufacturers deliver consistently good antibodies, while others do not (Berglund
et al. 2008). It is proposed that “if all antibodies were defined by their sequences and
made recombinantly, researchers worldwide would be able to use the same binding
reagents under the same conditions.” To execute this strategy, two steps would be
required. First is obtaining the sequences for widely used hybridoma-produced
monoclonal antibodies. Indeed, it is proposed that polyclonal antibodies should be
phased out of research entirely. Second, the research community should turn to
methods that directly yield recombinant binding reagents that can be sequenced and
expressed easily (Bradbury and Plückthun 2015). The practicality of this proposal
appears a challenge in the short term.

In summary, while antibodies are broadly used as chemical tools to aid target
validation, they are not free from issues that may lead to reproducibility issues when
they are not optimally characterized.

11 Parting Thoughts

Over the last decade, major progress has been witnessed in the life sciences area.
This could not be achieved without increased sophistication and understanding
aiding the design of high-quality probe compounds, in an increasing number of
chemical modalities. In turn, improved tools enabled the formulation of new
questions to interrogate novel hypotheses, leading to heightened understanding of
fundamental biology and pathophysiology, a key step in the discovery of new
therapies for the treatment of diseases. Chemistry is part of the solution to disease
treatment (no pun intended). Better chemistry understanding leads to better drugs.

Drug discovery projects require major commitments from society. Scientists
dedicate decades of efforts and sacrifices. Investors risk billions of dollars. Patients
are waiting and deserve the most ethical behaviors from all of us seeking to find new
palliatives to ease their suffering. The right path forward is one of high-quality and
rigorous scientific research.
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Abstract
Animal models consisting of inbred laboratory rodent strains have been a power-
ful tool for decades, helping to unravel the underpinnings of biological problems
and employed to evaluate potential therapeutic treatments in drug discovery.
While inbred strains demonstrate relatively reliable and predictable responses,
using a single inbred strain alone or as a background to a mutation is analogous to
running a clinical trial in a single individual and their identical twins. Indeed,
complex etiologies drive the most common human diseases, and a single inbred
strain that is a surrogate of a single genome, or data generated from a single sex, is
not representative of the genetically diverse patient populations. Further, phar-
macological and toxicology data generated in otherwise healthy animals may not
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translate to disease states where physiology, metabolism, and general health are
compromised. The purpose of this chapter is to provide guidance for improving
generalizability of preclinical studies by providing insight into necessary
considerations for introducing systematic variation within the study design,
such as genetic diversity, the use of both sexes, and selection of appropriate age
and disease model. The outcome of implementing these considerations should be
that reproducibility and generalizability of significant results are significantly
enhanced leading to improved clinical translation.

Keywords
Animal models · Genetic diversity · Pharmacodynamics · Pharmacokinetics · Sex

1 Introduction

There are many perspectives on what defines an “animal model,” but at the most
fundamental level, it reflects an animal with a disease or condition with either face or
construct validity to that observed in humans. Spontaneous animal models represent
the truest form of the definition and are best exemplified by cross-species diseases
such as cancer and diabetes where a particular species naturally develops the
condition as observed in humans. However even in these models with high face,
and seemingly construct validity, care must be taken when extrapolating from the
animal phenotype to the human disease as the underlying mechanisms driving the
disease may not be identical across species.

Animal models serve two primary purposes. The first use of animal models is to
elucidate biological mechanisms and processes. A key assumption in this approach
is that the animal species being examined has comparable enough physiology to
reasonably allow for extrapolation to human biology and disease states. An exten-
sion of the first purpose is to use animal models for estimating efficacy and safety of
new therapeutic treatments for alleviating human disorders. In both of these uses,
the fidelity of the animal model is critically dependent upon the homology of the
physiology between the animal model and human. The best model for human is
human, and the greater divergence from human across the phylogenetic scale (e.g.,
nonhuman primates > rodents > zebrafish > drosophila) introduces increasingly
larger gaps in genetic and physiological homology. For complex human-specific
disorders such as schizophrenia or Alzheimer’s disease, our confidence in findings
from animal models must be guarded as there is not a spontaneous animal model
of these human conditions. For instance, besides humans, there is no animal that
spontaneously exhibits Aβ plaques and neurofibrillary tangles that define the pathol-
ogy of Alzheimer’s disease. Moreover, the complex spectrum of cognitive dysfunc-
tion and neuropsychiatric comorbidities that these diseases produce cannot be fully
recapitulated or assessed (e.g., language impairment) in lower animal species. In
such cases, animal models are relegated to attempts in simulating specific symptoms
of the disorder (e.g., increasing striatal dopamine in rodents to model the striatal
hyperdopaminergia observed in schizophrenia patients and thought to underlie the
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emergence of positive symptoms) or to model specific pathological processes
observed in the human disease (e.g., generation of amyloid precursor protein
overexpressing mice to model the Aβ deposition seen in Alzheimer’s disease
patients). In this latter example, it is important to note that the translation of
transgenic mice Aβ deposition and mechanisms that reduce its accumulation have
translated well into human AD patients; however, because this is an incomplete
representation of the disease, agents that reduce Aβ deposition in both animals and
human AD patients have yet to prove successful in delaying disease progression.

Reproducibility and generalizability are two aspects of preclinical research that
have come under much scrutiny over the last several years. Examples of failures to
reproduce research findings, even in high-impact journals, are numerous and well
described in the literature (Jarvis and Williams 2016). Perhaps the most obvious
factor impacting across-lab reproducibility are deficiencies to note important meth-
odological variables of the study. As we discuss later in this chapter, it is surprising
how often key experimental variables such as specific strain or sex of animal used
are omitted in the methods section. In a direct attempt to improve scientific reporting
practices, initiatives such as use of the ARRIVE guidelines (Kilkenny et al. 2010)
have been instituted across the majority of scientific journals. Such factors can also
affect intra-lab reproducibility; for instance, when a particular student that ran the
initial study has left the lab or the lab itself has relocated to another institution and the
primary investigator reports challenges in reestablishing the model.

Challenges in generalizability of research findings are best exemplified by noted
failures in the realm of drug development in which a novel compound exhibits robust
efficacy in putative animal models of a human condition but fails to demonstrate
therapeutic benefit in subsequent clinical trials. Indeed, medication development for
Alzheimer’s disease has a remarkable failure rate of over 99% with a large percent-
age of drug development terminations attributed to lack of efficacy in Phase II or
Phase III clinical trials (Cummings et al. 2014).

It is interesting to speculate that improvements in reproducibility of preclinical
research may not necessarily translate into improved generalizability to the human
condition (see Würbel 2002). For instance, close adherence in using the same age,
substrain of mouse, husbandry conditions, and experimental details should improve
the likelihood of reproducing another lab’s findings. However, it also follows that if
a reported research finding is highly dependent upon a specific experimental config-
uration and the finding is lost with subtle procedural variations, then how likely is the
finding to translate to the human condition? Humans are highly heterogeneous
in their genetic composition and environmental determinants, often resulting in
subpopulations of patients that are responsive to certain treatments and others that
are described as treatment resistant. In preclinical research the best balance of
improving both reproducibility and generalizability is to institute the inclusion of
both sexes and incorporation of another strain or species. This approach will most
certainly reduce the number of positive findings across these additional variables,
but those findings that are consistent and robust will likely result in increased
reproducibility across labs and to translate into clinical benefit. In the sections that
follow, we highlight the importance of genetic background and sex in conducting
preclinical research.
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2 Genetic Background: The Importance of Strain
and Substrain

Dating back to the early 1900s, researchers have recognized the value of genetic
uniformity and stability of inbred strains, which have provided such benefits as
reducing study variability and needed samples sizes and improving reliability of
data. To date more than 20 Nobel Prizes have resulted from work in inbred strains,
and this knowledge has provided significant medical and health benefits (Festing
2014). Certainly, it continues to be an acceptable strategy to conduct research on a
single inbred strain of mice, provided that the context of the results is reported to not
suggest that the data are generalizable to other strains and species (e.g., humans).
A single inbred strain is not representative of the genetically diverse patient
populations and is instead representative of a single genome. Moreover, even
different substrains of a common strain of mice (e.g., C57BL/6J, C57BL/6N,
C57BL/6NTac) exhibit unique genetic dispositions resulting in surprisingly diver-
gent phenotypes (reviewed in Casellas 2011). Therefore, a major constraint in
translational research has been the common practice of limiting preclinical pharma-
cology studies to that of a single strain of mice.

Within the context of rodent studies, one example where lack of generalizability
of strain, substrain, and sex has been well documented is the rodent experimental
autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). MS is an
autoimmune disease caused by demyelination in the CNS, which results in a
spectrum of clinical presentations accompanied by progressive neuromuscular
disorders and paralysis (reviewed in Summers deLuca et al. 2010). In mice, immu-
nization with myelin/oligodendrocyte glycoprotein peptide induces EAE; however
the variability of disease presentation across mouse models has been a major
hindrance for facilitating drug development. In line with the genetic contributions
to MS in human patients, mouse strains and substrains are genetically and pheno-
typically divergent which introduces heterogeneous loading of risk alleles and
variations in phenotypes that contribute to the variability in disease onset and
severity (Guapp et al. 2003). The MS field is not unique to the challenges of
experimental variability resulting from the choice of genetic background in their
rodent model and has been documented in most fields of study (Grarup et al. 2014;
Jackson et al. 2015; Loscher et al. 2017; Nilson et al. 2000). While known for
decades that mouse substrains are genetically and phenotypically diverse from each
other, many in the research community are still not aware of this important caveat
and the implication on experimental findings.

Case in point, the C57BL/6 mouse strain is one of the most common and widely
used inbred strains with many substrains derived from the original lineage and now
maintained as separate substrain colonies. The C57BL/6J line originated at the
Jackson Laboratory by C.C. Little in the 1920s, and in the 1950s a cohort of mice
were shipped to the National Institutes of Health where a colony was established and
aptly named C57BL/6N (the suffix “N” refers to the NIH colony, while the “J” suffix
refers to the Jackson Laboratory colony) (reviewed in Kiselycznyk and Holmes
2011). At some point spontaneous mutations (i.e., genetic drift) occurred in each of
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these colonies resulting in these two substrains becoming genetically distinct from
each other with recent reports citing >10,000 putative and 279 confirmed variant
differences as well as several phenotypic differences between C57BL/6 substrains
(Keane et al. 2011; Simon et al. 2013). These genetic and phenotypic differences
between substrains are not unique to C57BL/6 as 129 substrains, among others, and
also have similar genetic diversity issues that must be considered when reporting and
extrapolating research (Kiselycznyk and Holmes 2011). Important to note is that
substrain nomenclature alone is not the sole information that identifies genetic and
phenotypic diversity. Individual or private colonies established for >20 generations
either at a commercial vendor or an academic institution are considered a substrain
and hence must adhere to the guidelines for nomenclature of mouse and rat strains as
established by the International Committee on Standardized Genetic Nomenclature
for Mice (reviewed in Sundberg and Schofield 2010). Laboratory code which
follows substrain notation annotates for strain/substrain source including commer-
cial vendor (e.g., C57BL/6NHsd and C57BL/6NTac, respectively, for Harlan and
Taconic) and is a critical piece of information to researchers that a substrain may
have further genetic variation, as in the case for C57BL/6N, than the original NIH
colony. The implication on research findings where failure to understand the role of
substrain differences, as well as failures to prevent inadvertent backcrossing of
substrains, has been highlighted recently (Mahajan et al. 2016; Bourdi et al. 2011;
McCracken et al. 2017). In one example, Bourdi and colleagues reported that
JNK2�/� knockout mice were more susceptible than their WT controls to
acetaminophen-induced liver injury which was in contrast to findings from other
laboratories demonstrating that JNK2�/� and inhibitors of JNK were protective
from acetaminophen-induced liver injury (Bourdi et al. 2011). Through careful
retrospective analysis, the researchers were able to determine that backcrossing on
two different background substrains conferred either toxicity or protective effects
(Bourdi et al. 2011).

This issue of genetic drift is not unique to mice. For instance, in the study of
hypertension and attention-deficit/hyperactivity disorder (ADHD), one of the most
studied rat models are the spontaneously hypertensive (SHR) and Wistar Kyoto
(WKY) ratlines. In terms of ADHD, the SHR rats display symptoms of inattention,
hyperactivity, and impulsiveness in various behavioral paradigms (Sagvolden et al.
2009). However like the C57BL/6 substrains, numerous SHR and WKY substrains
have been generated over the years. The SHR ratline was derived originally from a
WKY male with marked hypertension and a female with moderate blood pressure
elevations. Brother-sister matings continued with selection pressure for spontaneous
hypertension. The SHR line arrived at the National Institutes of Health (NIH) in
1966 from the Kyoto School of Medicine. From the NIH colony (SHR/N), SHR
lines were derived by Charles River, Germany (SHR/NCrl), and the Møllegaard
Breeding Centre, Denmark (SHR/NMol), as well as other institutions over the years.
The SHR rat strains exhibit an ADHD-like phenotype, whereas the WKY line serves
as a normative control. A problem exists, in that, while the WKY strain was
established from the same parental Wistar stock as the SHR line, there is consider-
able genetic variability among WKY strains because the WKY breeding stock was
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not fully inbred prior to being distributed to different institutions for breeding which
resulted in accelerated genetic drift. A further issue for using the WKY strain as a
genetic and behavioral control for the SHR strain is that the inbreeding for the WKY
strain was initiated over 10 years later than that of the SHR strain which calls
into question the validity of the WKY rats as a proper control for findings in SHR
rats (Louis and Howes 1990). As one might expect from such genetic diversity in
SHR and WKY lines, findings from both cardiovascular blood pressure and ADHD
phenotypes have at times been contradictory, and much commentary has been made
about the appropriate selection of controls when studying phenotypes associated
with these strains of rats (St. Lezin et al. 1992).

3 Importance of Including Sex as a Variable

The X and Y chromosomes are not the only difference that separates a female from a
male. In preclinical studies there has been a pervasively, flawed assumption that
male and female rodents have similar phenotypes. Publications that include such
general statements as “data were combined for sex since no sex effect was observed”
without the inclusion of the analysis, or simply reporting “data not shown” for the
evaluation of effects of sex, are unacceptable. From basic physiological phenotypes
(e.g., body weight, lean and fat mass) to any number of neuroendocrine, immune,
and behavioral phenotypes beyond reproductive behaviors, males and females differ
(reviewed in Hughes 2007; Karp et al. 2017). Furthermore, many human diseases
affect males and females differently, whereas the influence of sex can affect disease
susceptibility, symptom presentation and progression, and treatment outcomes.
Well-documented sex differences exist for cardiovascular disease, autoimmune
diseases, chronic pain, and neuropsychiatric disorders with females generally having
greater incidences than males (reviewed in Regitz-Zagrosek 2012; IOM 2011).
Therefore, ignorance of sex-specific effects in study design, phenotypes, pharmaco-
kinetics, pharmacodynamic measures, or interpretation of data without sex as a
covariate are failing to provide accuracy in reporting of the data. To this end, in
2014 the NIH issued a directive to ensure that both male and female subjects are
represented in preclinical studies, an extension of the 1993 initiative to include
women as participants in clinical trials receiving NIH funding (Clayton and Collins
2014).

With respect to animal models used in pharmacology experiments, sex
differences in disease presentation and progression have also been reported. For
example, while women have a higher prevalence of chronic pain and related
disorders, preclinical studies have largely focused on male subjects. Problematically,
after hundreds of studies historically employed male mice to study nociceptive
responses mediated by the toll-like 4 receptor (TLR4), and subsequent pharmacol-
ogy studies targeting TLR4 for analgesia, it was later discovered that the involve-
ment of TLR4 in pain behaviors in male mice was dependent on testosterone (Sorge
et al. 2011). Therefore, these results and any potential therapeutics for the treatment
of pain with a mechanism of action targeting TLR4 could not be generalized to both
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sexes (Sorge et al. 2011). In another example, the NOD mouse model of Type
1 diabetes has a higher incidence and an earlier onset of diabetes symptoms in
females than males (Leiter 1997). Consequently, female NOD mice are much more
widely used than males although the incidence in the clinic is nearly 1:1 for males/
females which may present a conundrum when potential novel treatments are only
studied in a single sex as in the TLR4 experiments highlighted above. Furthermore,
in neuropsychiatric disorders whereas major depressive disorder, for example, has a
higher incidence in females than males, preclinical studies have largely used only
males for testing – even though sex differences in rodent emotional behavior exist
(Dalla et al. 2010; Kreiner et al. 2013; Kokras et al. 2015; Laman-Maharg et al.
2018). One of the more common arguments made for not including female subjects
in preclinical studies is that they have larger variability, likely contributed to by the
estrus cycle. However, a meta-analysis of 293 publications revealed that variability
in endpoints using female mice was not greater than those in males, inclusive of
variations in the estrus cycle as a source of variability in the females (Becker et al.
2016; Prendergast et al. 2014; Mogil and Chanda 2005). There are, however,
baseline differences for males versus females across behavioral phenotypes that
further highlight the need to study both sexes and with data analyzed within sex
when drug treatment is evaluated in both sexes.

4 Pharmacokinetic and Pharmacodynamic Differences
Attributable to Sex

In addition to the observation of sex differences across disease and behavioral
phenotypes, sex differences are also commonly observed in pharmacokinetic
(PK) and drug efficacy studies; yet for many years test subjects in both clinical
and preclinical studies have most commonly been male. A survey of the pain and
neuroscience field in the early 1990s revealed that only 12% of published papers had
used both male and female subjects and 45% failed to reveal the sex of the subjects
included in the studies (Berkley 1992). A later study building on this revealed that
between 1996 and 2005 although researchers now reliably reported the sex of their
preclinical subjects (97%), most studies (79%) were still performed on male animals
(Mogil and Chanda 2005). Although the translatability of preclinical sex differences
to human may not always be clear-cut, assessments of these parameters in both sexes
can provide additional information during phenotyping and genetic studies, as well
as the drug discovery and development process.

In the drug discovery field, there are multiple examples in the clinical literature of
sex differences in both measured exposure and pharmacological effect in response to
novel drugs. A meta-analysis of 300 new drug applications (NDAs) reviewed by the
FDA between 1995 and 2000 showed that 163 of these included a PK analysis by
sex. Of these 163, 11 studies showed greater than 40% difference in PK parameters
between males and females (Anderson 2005). There are important implications
for sex differences in exposure levels. For example, zolpidem (Ambien®) results
in exposure levels 40–50% higher in females when administered sublingually
(Greenblatt et al. 2014). These sex differences in exposure levels for zolpidem
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were also observed in rats, with maximal concentration (Cmax) and area under the
curve (AUC) both significantly higher in females relative to males (Peer et al. 2016).
While Ambien was approved in 1992, in 2013 the FDA recommended decreasing
the dose by half for females due to reports of greater adverse events including
daytime drowsiness observed in female patients (United States Food and Drug
Agency 2018).

While any aspect of a drug’s pharmacokinetic properties could potentially lead to
sex differences in measured drug exposure, sexually divergent differences in metab-
olism appear to be the most concerning (Waxman and Holloway 2009). In multiple
species, enzymes responsible for drug metabolism show sexually dimorphic expres-
sion patterns that affect the rate of metabolism of different drugs. In humans, females
show higher cytochrome p450 (CYP) 3A4 levels in the liver as measured by both
mRNA and protein (Wolbold et al. 2003). Studies have also observed higher activity
of this enzyme in females (Hunt et al. 1992). In rodents, both the mouse (Clodfelter
et al. 2006, 2007; Yang et al. 2006) and rat (Wautheir and Waxman 2008) liver show
a large degree of sexually dimorphic gene expression. For instance, rats exhibit a
male-specific CYP2C11 expression pattern, whereas CYP2C12 shows a female-
specific one (Shapiro et al. 1995). While rodent sex differences may not necessarily
translate into similar patterns in humans, the complexity of metabolic pathways
underscore the importance of understanding drug exposure in each sex, at the
relevant time point, and in the relevant tissue when making pharmacodynamic
measurements.

With respect to pharmacodynamics, sex differences exist in functional outcome
measures, both with respect to baseline activity in the absence of drug, and in
response to treatments. As critically highlighted in the field of preclinical pain
research, a meta-analysis reported sex differences in sensitivity to painful stimuli
in acute thermal pain and in chemically induced inflammatory pain (Mogil and
Chanda 2005). For example, in a study by Kest and colleagues, baseline nociceptive
responses and sensitivity to thermal stimuli were examined across males and females
of 11 inbred mouse strains (Kest et al. 1999). Results of this study not only revealed
divergent phenotypic responses across genotypes for pain sensitivity but also sex by
genotype interactions. Moreover, when morphine was administered directly into the
CNS, the analgesic effects varied across both strain and sex, further highlighting the
importance of including both sexes in pharmacodynamic studies, as well as consid-
ering subject populations beyond a single inbred strain. These sex differences are not
specific to morphine as they have also been demonstrated in rats and mice for
sensitivity to the effects of other mu opioid receptor agonists (Dahan et al. 2008).
Importantly, both sexually dimorphic circuitry and differences in receptor expres-
sion levels mediating pain perception and pharmacological responses, likely driven
by genetics, are suggested to contribute to these differences (Mogil and Bailey
2010).

In clinical pain research, sex differences in pharmacodynamic responses have
been highlighted by reports from clinical trials with MorphiDex, a potential medica-
tion for the treatment of pain that combined an NMDA antagonist with morphine
(Galer et al. 2005). While many preclinical studies demonstrated robust and reliable
efficacy, these reports were almost exclusively conducted in male subjects. During
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clinical trials where both men and women were included, the drug failed to produce
any clinical benefit over standard pain medications (Galer et al. 2005). Intriguingly,
it was later determined that while the drug was efficacious in men, it was ineffective
in women with retrospective experiments in female mice corroborating these data
(discussed in IOM 2011; Grisel et al. 2005). Overall, while we may not fully
understand the biological underpinnings of sex differences in responses to pharma-
cology, profiling both sexes in preclinical pharmacology studies should provide
insight into the differences and potentially enable better clinical trial design.

5 Improving Reproducibility Through Heterogeneity

While the major attention on the “reproducibility crisis” in biomedical research has
generally been focused on the lack of translation related to issues with experimental
design and publication bias, recent literature has provided insight to the concept
that researchers might be practicing “overstandardization” as good research
practices. For example, the considerations for controlling as much as possible
within an experiment (i.e., sex, strain, vendor, housing conditions, etc.), and across
experiments within a given laboratory in order to enable replication (i.e., same day of
week, same technician, same procedure room), have not necessarily been previously
considered an issue with respect to contributing to lack of reproducibility. However,
as recently highlighted by several publications, this “standardization fallacy”
suggests that the more control and homogeneity given to an experiment within a
laboratory may lead to the inability for others to reproduce the findings given the
inherent differences in environment that cannot be standardized across laboratories
(Würbel 2000; Voelkl et al. 2018; Kafkafi et al. 2018). In this respect, there is indeed
value in applying various levels of systematic variation to address a research
question, both through intra- and interlaboratory experiments. One approach to
improve heterogeneity beyond including both sexes within an experiment and
extending experimental findings to multiple laboratories (interlaboratory reproduc-
ibility) is to also introduce genetic diversity. While it may be cost prohibitive
to engineer genetic mutations across multiple lines of mouse strains in a given
study, one could alternatively employ strategically developed recombinant mouse
populations such as the Collaborative Cross (CC) (Churchill et al. 2004). The CC are
recombinant inbred mouse strains that were created by cross breeding eight different
common inbred strains resulting in increased genetic and phenotypic diversity. CC
lines include contributions from the common inbred C57BL/6J strain as well as two
inbred strains with high susceptibility for Type 1 and Type II diabetes, two inbred
strains with high susceptibility for developing cancers (129S1/SvlmJ and A/J), and
three wild-derived strains (Srivastava et al. 2017). A recent study from Nachshon
et al. (2016) highlighted the value of using a CC population for studying the impact
of genetic variation on drug metabolism, while Mosedale et al. (2017) have
demonstrated the utility of CC lines for studying potential toxicological effects of
drugs on genetic variation in kidney disease (Nachshon et al. 2016; Mosedale et al.
2017).

Genetic Background and Sex: Impact on Generalizability of Research Findings. . . 155



6 Good Research Practices in Pharmacology Include
Considerations for Sex, Strain, and Age: Advantages
and Limitations

Improving translation from mouse to man requires selection of the appropriate
animal model, age, and disease-relevant state. Behavioral pharmacology studies
with functional outcome measures that planned for enablement of translational
efficacy studies should include pharmacokinetics and PK/PD modeling in the animal
model at the pathologically relevant age. It should not be expected that PK data in
young, healthy subjects would generalize to PK data in aged, diseased subjects or
across both sexes. Similarly, pharmacodynamic measures including behavior, neu-
roendocrine, immune, metabolic, cardiovascular, and physiology may not generalize
across age, sex, or disease state. Figure 1 depicts a sample flow diagram of experi-
mental design parameters required for deliberation where species, strain, substrain,
age, sex, and disease state are crucial considerations.

7 Conclusions and Recommendations

Drug discovery in both preclinical studies and in the clinic has only begun to harness
the power of genetic diversity. Large-scale clinical trials have focused on recruitment
of patients (i.e., enrollment metrics) based on “all comers” symptom presentation for
enrollment. It is tempting to believe that at least some of the high clinical attrition of
new therapeutic agents can be attributable to a failure to consider patient heteroge-
neity. It is a common adage that a rule of thirds exist in patient treatment response to
a medication: a third of patients show robust efficacy, a third exhibit partial benefit
to the agent, and a third are termed “treatment resistant.” One reason that much of
the pharmaceutical industry has moved away from developing antidepressant
medications is that established antidepressant medications, such as SSRIs, when
used as a positive control, do not separate from placebo in 30–50% of the trials,
resulting in a “busted” clinical trial (reviewed in Mora et al. 2011). Importantly, the
preclinical studies that have enabled these trials have largely used male subjects and
frequently in otherwise healthy mice of a single inbred strain such as C57BL/6J mice
(reviewed in Caldarone et al. 2015; reviewed in Belzung 2014). It is possible that
preclinical studies focused on treatment response in both sexes and in genetically
divergent populations with face and construct validity would be in a better position
to translate to a heterogeneous treatment resistant clinical population.

Within the last decade, however, as the genetic contributions of diseases become
known, precision medicine approaches that recruit patients with specific genetic
factors (e.g., ApoE4 carriers at risk for Alzheimer’s disease) to test specific
mechanisms of action will continue to evolve over recruitment for “all comers”
patients with a diagnosis of Alzheimer’s disease (Watson et al. 2014). In this respect,
in animal studies, analogous genetic factors (e.g., mouse model homozygous for the
Apoe4 allele), and at an analogous mouse to human age comparison, to test a similar
hypothesis are critical.
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As previously stated above, the best model for human is human. In drug discov-
ery prior to the FDA enabling clinical trials in humans, it is critical that the best
approach to translation is the design and rigorous execution of preclinical pharma-
cology studies that best mirror the intended patient population. In this respect, for
pharmacokinetic and pharmacodynamics studies, careful consideration should be
taken for ensuring that the animal model used has face and construct validity, that
both sexes are included and at an analogous age relevant to the disease trajectory,
and that studies consider gene by environment interactions as ways to improve
reliability, reproducibility, and translation from the bench to the clinic.
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Abstract
Nonclinical studies form the basis for the decision whether to take a therapeutic
candidate into the clinic. These studies need to exhibit translational robustness
for both ethical and economic reasons. Key findings confirmed in multiple
species have a greater chance to also occur in humans. Given the heterogeneity
of patient populations, preclinical studies or at least programs comprising multi-
ple studies need to reflect such heterogeneity, e.g., regarding strains, sex, age, and
comorbidities of experimental animals. However, introducing such heterogeneity
requires larger studies/programs to maintain statistical power in the face of greater
variability. In addition to classic sources of bias, e.g., related to lack of randomi-
zation and concealment, translational studies face specific sources of potential
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bias such as that introduced by a model that may not reflect the full spectrum
of underlying pathophysiology in patients, that defined by timing of treatment, or
that implied in dosing decisions and interspecies differences in pharmacokinetic
profiles. The balance of all these factors needs to be considered carefully for each
study and program.

Keywords
Age · Comorbidity · Heterogeneity · Robustness · Sex · Translational research

1 Introduction

The testing of new medicines in humans, particularly in patients, requires a sound
and robust body of nonclinical evidence for both ethical and economic reasons
(Wieschowski et al. 2018). Ethically, participation of humans in a clinical study is
based on the premise that a new drug may provide more efficacious and/or safer
treatment of a disease. Economically, it requires an investment of around 20million €
to bring a drug candidate to clinical proof-of-concept evaluation, particularly for a
first-in-class medicine. The supporting evidence for the ethical and the economical
proposition is typically based on animal studies. Animal models can become partic-
ularly important if human material is difficult to obtain (Alini et al. 2008) or the
condition to be treated is too complex or too poorly understood to solely extrapolate
from in vitro studies (Michel and Korstanje 2016). While existing treatments show
that this can be done successfully, numerous examples exist where experimental
treatments looked promising in animal models but have failed in clinical studies
due to lack of efficacy. Prominent examples of failed clinical programs include
amyotrophic lateral sclerosis (Perrin 2014), anti-angiogenic treatment in oncology
(Martić-Kehl et al. 2015), several cardiovascular diseases (Vatner 2016), sepsis
(Shukla et al. 2014), and stroke-associated neuroprotection (Davis 2006). Therefore,
the idea of enhancing robustness of nonclinical studies is not new and has been
advocated for more than 20 years (Hsu 1993; Stroke Therapy Academic Industry
Roundtable (STAIR) 1999). Nonetheless, poor technical quality and reporting issues
remain abundant (Chang et al. 2015; Kilkenny et al. 2009), and clinical development
programs continue to fail due to lack of efficacy despite promising findings in
animals.

Generalizability shows how applicable the results from one model are for others.
In the context of translational research, this translates into the question whether
findings from experimental models are likely to also occur in patients. Generaliz-
ability of preclinical animal studies is possible, only if the studies are reproducible,
replicable, and robust. This chapter discusses causes contributing to lack of robust-
ness of translational studies and the cost/benefit in addressing them. In this context
we define robustness as an outcome that can be confirmed in principle despite
some modifications of experimental approach, e.g., different strains or species.
Only robust findings in the nonclinical models are likely to predict those in clinical
proof-of-concept studies. For obvious reasons, a translational study can only be
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robust if it is reproducible, i.e., if another investigator doing everything exactly as
the original researchers will obtain a comparable result. General factors enhancing
reproducibility such as randomization, blinding, choice of appropriate sample sizes
and analytical techniques, and avoiding bias due to selective reporting of findings
(Lapchak et al. 2013; Snyder et al. 2016) will not be covered here because they
are discussed in depth in other chapters of this book. However, it should be noted
that generally accepted measures to enhance reproducibility have not been adhered
to in most studies intended to have translational value (Kilkenny et al. 2009) and
reporting standards have often been poor (Chang et al. 2015).

Against this background, communities interested in various diseases have
developed specific recommendation for the design, conduct, analysis, and reporting
of animal studies in their field, e.g., Alzheimer’s disease (Snyder et al. 2016), athero-
sclerosis (Daugherty et al. 2017), lung fibrosis (Jenkins et al. 2017), multiple sclerosis
(Amor and Baker 2012; Baker and Amor 2012), rheumatology (Christensen et al.
2013), stroke (Lapchak et al. 2013; Stroke Therapy Academic Industry Roundtable
(STAIR) 1999), or type 1 diabetes (Atkinson 2011; Graham and Schuurman 2015);
disease-overarching guidelines for animal studies with greater translational value have
also been proposed (Anders and Vielhauer 2007). We will also discuss these disease-
overarching approaches.

2 Homogeneous vs. Heterogeneous Models

Homogeneous models, e.g., inbred strains or single sex of experimental animals,
intrinsically exhibit less variability and, accordingly, have greater statistical power to
find a difference with a given number of animals (sample size). In contrast, human
populations to be treated tend to be more heterogeneous, e.g., regarding gender,
ethnicity, age, comorbidities, and comedications. While heterogeneity often remains
limited in phase III clinical studies due to strict inclusion and exclusion criteria,
marketed drugs are used in even more heterogeneous populations. This creates a
fundamental challenge for translational studies. More homogeneous models tend to
need fewer animals to have statistical power but may have a smaller chance to reflect
the broad patient population intended to use a drug. In contrast, more heterogeneous
translational programs are likely to be costlier but, if consistently showing efficacy,
should have a greater chance to predict efficacy in patients. The following discusses
some frequent sources of heterogeneity. However, these are just examples, and
investigators are well advised to systematically consider the costs and opportunities
implied in selection of models and experimental conditions (Fig. 1).

2.1 Animal Species and Strain

While mammals share many regulatory systems, individual species may differ
regarding the functional role of a certain pathway. For instance, β3-adrenoceptors
are a major regulator of lipolysis in rodents, particularly in brown adipose tissue; this
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was the basis of clinical development of β3-adrenoceptor agonists for the treatment
of obesity and type 2 diabetes. However, metabolic β3-adrenoceptor agonist
programs of several pharmaceutical companies have failed in phase II trials (Michel
and Korstanje 2016) because adult humans have little brown adipose tissue and
lipolysis in human white adipose tissues is primarily driven by β1-adrenoceptors
(Barbe et al. 1996). Similarly, α1-adrenoceptors are major regulators of inotropy
in rat heart but have a limited role, if any, in the human heart (Brodde and Michel
1999). Thus, the targeted mechanism should be operative in the animal species used
as preclinical model and in humans. When corresponding human data are lacking,
multiple animal strains and species should be compared that are phylogenetically
sufficiently distinct, i.e., the confirmation of rat studies should not be in mice but
perhaps in dogs or nonhuman primates. This approach has long been standard
practice in toxicology, where regulatory agencies require data in at least two species,
one of which must be a nonrodent.

A variation of this theme are differences between strains within a species.
For instance, rat strains can differ in the thymic atrophy in response to induction
of experimental autoimmune encephalomyelitis (Nacka-Aleksić et al. 2018) or in the

19 
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Fig. 1 Degree of heterogeneity has effects on program/study costs and on translational robustness.
An appropriate balance must be defined on a project-specific basis
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degree of urinary bladder hypertrophy in streptozotocin-induced type 1 diabetes
(Arioglu Inan et al. 2018). Similarly, inbred strains may yield more homogeneous
responses than outbred strains and, accordingly, may require smaller sample sizes;
however, the traits selected in an inbred strain may be less informative. For example,
inbred Wistar-Kyoto rats are frequently used as normotensive control in studies
with spontaneously hypertensive rats. However, Wistar-Kyoto rats may share some
phenotypes with spontaneously hypertensive rats such as increased frequency of
micturition and amplitude of urinary bladder detrusor activity with the hypertensive
animals that are not observed in other normotensive strains (Jin et al. 2010).

2.2 Sex of Animals

Except for a small number of gender-specific conditions such as endometriosis
or benign prostatic hyperplasia, diseases typically affect men and women – although
often with different prevalence. Thus, most drugs must work in both genders.
Many drug classes are similarly effective in both genders, for instance, muscarinic
antagonists in the treatment of overactive bladder syndrome (Witte et al. 2009), and
preclinical data directly comparing both sexes had predicted this (Kories et al. 2003).
On the other hand, men and women may exhibit differential responsiveness to a
given drug, at least at the quantitative level; for instance, the vasopressin receptor
agonist desmopressin reduced nocturia to a greater extent in women than in men
(Weiss et al. 2012). Such findings can lead to failed studies in a mixed gender
population. Therefore, robust preclinical data should demonstrate efficacy in both
sexes. However, most preclinical studies do not account for sex as a variable and
have largely been limited to male animals (Tierney et al. 2017; Pitkänen et al. 2014).
For instance, only 12 out of 71 group comparisons of urinary bladder hypertrophy in
the streptozotocin model of type 1 diabetes were reported for female rats (Arioglu
Inan et al. 2018). In reaction, the NIH have published guidance on the consideration
of sex as a biological variable (National Institutes of Health 2015). It requires to use
both sexes in grant application unless the target disease predominantly affects one
gender. For a more detailed discussion of the role of sex differences, see chap. 9 by
Rizzo et al.

Generally performing preclinical studies in both sexes comes at a price. A study
designed to look at drug effects vs. vehicle in male and female rats and compare the
effect between sexes needs not only twice as many groups but also a greater number
of animals per group to maintain statistical power when adjusting for multiple
comparisons. This makes a given study more expensive (Tannenbaum and Day
2017), and lack of funding is seen as a main reason not to incorporate both sexes in
study design (McCarthy 2015). An alternative approach could be to do a single study
based on mixed sexes. This may be more robust to detect an efficacious treatment
but also may have more false negatives if a drug is considerably less effective in
one of the two sexes. As it may be useful to study multiple animal models for a
given condition (see below), a third option could be to use males in one and females
in the other model, targeting a balanced representation of sexes across a program.
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This works well if the two studies yield similar results. However, if they show
different results, one does not know whether such difference comes from that in sex
of the experimental animal or from that of model, necessitating additional studies.

2.3 Age

Studies in various organ systems and pathologies show that older animals react
differently than adolescent ones, for instance, in the brain (Scerri et al. 2012), blood
vessels (Mukai et al. 2002), or urinary bladder (Frazier et al. 2006). Nonetheless,
the most frequently used age group in rat experiments is about 12 weeks old at the
start of the experiment, i.e., adolescent, whereas most diseases preferentially affect
patients at a much higher age. Moreover, the elderly may be more sensitive to side
effects, for instance, because they exhibit a leakier blood-brain barrier (Farrall and
Wardlaw 2009) or are more prone to orthostasis (Mets 1995), thereby shifting the
efficacy/tolerability balance in an unfavorable way. The same applies to the reduced
renal function in the elderly, which can affect pharmacokinetics of an investigational
drug in a way not predicted from studies in adolescent animals. While experiments
in old animals are more expensive than those in adolescent ones (a 2-year-old rat
may be ten times as expensive as a 12-week-old animal), it cannot necessarily be
expected that young animals are highly predictive for conditions predominantly
affecting the elderly. The conflict between a need for preclinical data in an age
group comparable with that of the target population and the considerably higher
cost of aged animals could be resolved by performing at least one key preclinical
study in old animals.

2.4 Comorbidities

A condition targeted by a new medication frequently is associated with other
diseases. This can reflect that two conditions with high prevalence in an age group
often coincide based on chance, e.g., because both increase in prevalence with age.
However, it can also result from two conditions sharing a root cause. An example of
the former is that patients seeking treatment for the overactive bladder syndrome
were reported to concomitantly suffer from arterial hypertension (37.8%), diabetes
(15.4%), benign prostatic hyperplasia (37.3% of male patients), and depression
and congestive heart failure (6.5% each) (Schneider et al. 2014), all of which are
age-related conditions. An example of the latter are diseases involving atherosclero-
sis as a common risk factor, including hypertension, heart failure, and stroke.
Regardless of the cause of association between two disease states, comorbidity
may affect drug effects in the target disease. Thus, studies in experimental stroke
treatment have largely been performed in otherwise healthy animals (Sena et al.
2007). That this may yield misleading data is highlighted by a presumed anti-stroke
drug, the free radical scavenger NXY-059. While this drug had been tested in
nine preclinical studies, it failed in a clinical proof-of-concept study; however, the
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preclinical package included only a single study involving animals with relevant
comorbidity, and that study showed a considerably smaller efficacy than the
others (MacLeod et al. 2008). Greater reliance on animal models with relevant
comorbidities may have prevented this drug candidate advancing to clinical studies,
thereby sparing study participants from an ineffective treatment and saving
the sponsoring company a considerable amount of resources. Again, the balance
between greater robustness and greater cost may be achieved by doing some studies
in animal models with and some without relevant comorbidity.

In a more general vein, lack of consistency across species, sexes, age groups, or
comorbidities is not only a hurdle but can also be informative as diverging findings
in one group (if consistent within this group) may point to important new avenues
of research (Bespalov et al. 2016a).

3 Translational Bias

Bias leading to poor reproducibility can occur at many levels, including selection
of model and samples, execution of study, detection of findings, unequal attrition
across experimental groups, and reporting (Green 2015; Hooijmans et al. 2014).
Most of these are generic issues of poor reproducibility and are covered elsewhere
in this book. We will focus on aspects with particular relevance for translational
studies.

3.1 Single Versus Multiple Pathophysiologies

Choice of animal model is easier if the primary defect is known and can be recreated
in an animal, e.g., mutation of a specific gene. However, even then it is not fully clear
whether physiological response to mutation is the same in animals and humans.
Many syndromes can be the result of multiple underlying pathophysiologies.
For instance, arterial hypertension can be due to excessive catecholamine release
as in pheochromocytoma, to increased glucocorticoid levels as in Cushing’s disease,
to an increased activity of the renin-angiotensin system such as in patients with
renal disease, or to increased mineralocorticoid levels such as in patients with
Conn’s syndrome. Accordingly, angiotensin receptor antagonists effectively lower
blood pressure in most animal models but have little effect in normotensive animals
or animals hypertensive due to high salt intake or the diabetic Goto-Kakizaki rat
(Michel et al. 2016). As a counterexample, β-adrenoceptor antagonists lower blood
pressure in many hypertensive patients but may increase it in pheochromocytoma.
Thus, reliance on a limited panel of animal models can yield misleading results if
those models only reflect pathophysiologies relevant to a minor fraction of the
patient population to be treated. While irrelevant models often yield positive findings
(MacLeod et al. 2008), they do not advance candidates likely to become approved
treatments. The choice of relevant animal models should involve careful consideration
of the pathophysiology underlying the human disease to be treated (Green 2002).
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However, this may be easier said than done, particularly in diseases that are multifac-
torial and/or for which limited insight into the underlying pathophysiology exists.

3.2 Timing of Intervention

Activation or inhibition of a given mechanism is not necessarily equally effective
in the prevention and treatment of a disease or in early and late phases of it (Green
2002). An example of this is sepsis. A frequently used model of sepsis is the
administration of lipopolysaccharide. Many agents found active in this model
when used as pre-treatment or co-administered with the causative agent have failed
to be of benefit in patients, presumably at least partly because the early pathophysi-
ological cascade initiated by lipopolysaccharide differs from the mechanisms in later
phases of sepsis. Patients typically need treatment for symptoms of sepsis when the
condition has fully developed; therefore, a higher translational value is expected
from studies with treatment starting several hours after onset of septic symptoms
(Wang et al. 2015). Similarly, many conditions often are diagnosed in patients at
an advanced stage, where partly irreversible processes may have taken place. One
example of this is tissue fibrosis, which is more difficult to resolve than to prevent
(Michel et al. 2016). Another example is oncology where growth of the primary
tumor may involve different mechanisms than metastasis (Heger et al. 2014).
Moreover, the assessment of outcomes must match a clinically relevant time point
(Lapchak et al. 2013); for instance, β-adrenoceptor agonists acutely improve cardiac
function in patients with heart failure, but their chronic use increased mortality (The
German Austrian Xamoterol-Study Group 1988). Therefore, animal models can only
be expected to be predictive if they reflect the clinical setting in which treatment is
intended to be used.

3.3 Pharmacokinetics and Dosage Choice

Most drugs have only limited selectivity for their molecular target. If a drug is
underdosed relative to what is needed to engage that target, false negative effects
may occur (Green 2002), and a promising drug candidate may be wrongly aban-
doned. More often an experimental treatment is given to animals in doses higher
than required, which may lead to off-target effects that can yield false positive data.
Testing of multiple doses, preferably accompanied by pharmacokinetics of each
dose, may help avoiding the false negative and false positive conclusions based on
under- and overdosing, respectively. Moreover, a too high dose may cause adverse
effects which shift the efficacy/tolerability ration in an unfavorable way, potentially
leading to unjustified termination of a program. Careful comparison of pharmacoki-
netic and pharmacodynamic effects can improve interpretation of data from hetero-
geneous models (Snyder et al. 2016), as has been shown in QTc prolongation
(Gotta et al. 2015). QTc prolongation can happen as a consequence of alterations
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of ion channel function, which can lead to impairing ventricular repolarization in
the heart and may predispose to polymorphic ventricular tachycardia (torsade de
pointes), which in turn may cause syncope and sudden death. This may be further
aided by the use of biomarkers, particularly target engagement markers (Bespalov
et al. 2016b). It is generally advisable to search for information on specific-specific
pharmacokinetic data to identify most suitable doses prior to finalizing a study
design (Kleiman and Ehlers 2016).

Moreover, desired and adverse drug effects may exhibit differential time profiles.
An example of this are α1-adrenoceptor antagonists intended for the treatment of
symptoms of benign prostatic hyperplasia. Concomitant lowering of blood pressure
may be an adverse effect in their use. Original animal studies have typically
compared drug effects on intraurethral pressure as a proxy for efficacy and those
on blood pressure as a proxy for tolerability (Witte et al. 2002). However, it became
clear that some α1-adrenoceptor antagonists reach higher concentrations in target
tissue than in plasma at late time points; this allows dosing with smaller peak plasma
levels and blood pressure effects which maintain therapeutic efficacy, thereby
providing a basis for improving tolerability (Franco-Salinas et al. 2010).

4 Conclusions

Bias at all levels of planning, execution, analysis, interpretation, and reporting of
studies is a general source of poor reproducibility (Green 2015; Hooijmans et al.
2014). Additional layers such as choice of animal model, stage of condition, and
tested doses add to the potential bias in translational research. A major additional
hurdle for translational research is related to the balancing between homo- and
heterogeneity of models. While greater heterogeneity is more likely to be represen-
tative for patient groups to be treated, it also requires larger studies. These are not
only more expensive but also have ethical implications balancing number of animals
being used against statistical power and robustness of results (Hawkins et al. 2013).
Conclusions on the appropriate trade-off may not only be specific for a disease
or a treatment but also depend on the setting in which the research is performed,
e.g., academia, biotech, and big pharma (Frye et al. 2015). As there is no universally
applicable recipe to strike the optimal balance, translational investigators should
carefully consider the implications of a chosen study design and apply the limitations
implied in their interpretation of the resulting findings.

While considerations will need to be adapted to the disease and intervention of
interest, some more general recommendations emerge. While we often have a good
understanding which degree of symptom improvement in a patient is clinically
meaningful, similar understanding in animal models if mostly missing. Nonetheless,
we consider it advisable that investigators critically consider whether the effects they
observe in an experimental model are of a magnitude that can be deemed to be
clinically meaningful if confirmed in patients. It has been argued that the nonclinical
studies building the final justification to take a new treatment into patients “need to
apply the same attention to detail, experimental rigour and statistical power . . . as in
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the clinical trials themselves” (Howells et al. 2014). In this respect, it has long
been the gold standard that pivotal clinical trials should be based on a multicenter
design to limit site-specific biases, largely reflecting unknown unknowns. While
most nonclinical studies are run within a single lab, examples of preclinical multi-
center studies are emerging (Llovera et al. 2015; Maysami et al. 2016). While
preclinical multicenter studies improve robustness, they are one component for
improved quality but do not substitute for critical thinking.
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Abstract
Insufficient description of experimental practices can contribute to difficulties in
reproducing research findings. In response to this, “minimum information”
guidelines have been developed for different disciplines. These standards help
ensure that the complete experiment is described, including both experimental
protocols and data processing methods, allowing a critical evaluation of the whole
process and the potential recreation of the work. Selected examples of minimum
information checklists with relevance for in vitro research are presented here and
are collected by and registered at the MIBBI/FAIRsharing Information Resource
portal.

In addition, to support integrative research and to allow for comparisons and
data sharing across studies, ontologies and vocabularies need to be defined and
integrated across areas of in vitro research. As examples, this chapter addresses
ontologies for cells and bioassays and discusses their importance for in vitro
studies.

Finally, specific quality requirements for important in vitro research tools (like
chemical probes, antibodies, and cell lines) are suggested, and remaining issues
are discussed.

Keywords
In vitro research · MIAME guidelines · Minimum Information · Ontologies ·
Quality standards

1 Introduction: Why Details Matter

As laboratory workflows become increasingly diverse and complex, it has become
more challenging to adequately describe the actual methodology followed. Efficient
solutions that specify a minimum of information/items that clearly and transparently
define all experimental reagents, procedures, data processing, and findings of a
research study are required. This is important not only to fully understand the new
information generated but also to provide sufficient details for other scientists to
independently replicate and verify the results.

However, it can be very difficult to decide which parameters, settings, and
experimental factors are critical and therefore need to be reported. Although the
level of detail might differ, the need to define minimum information
(MI) requirements to follow experiments in all different fields of life sciences is
not a new phenomenon (Shapin and Schaffer 1985).

In 1657, Robert Boyle and his associate, Robert Hooke, designed an air pump in
order to prove the existence of the vacuum, a space devoid of matter. At that time,
Boyle’s air pump was the first scientific apparatus that produced vacuum – a
controversial concept that many distinguished philosophers considered impossible.
Inspired by Boyle’s success, the Dutch mathematician and scientist Christiaan
Huygens built his own air pump in Amsterdam a few years later, which was the
first machine built outside Boyle’s direct supervision. Interestingly, Huygens pro-
duced a phenomenon where water appeared to levitate inside a glass jar within the
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air pump. He called it “anomalous suspension” of water, an effect never noticed by
Boyle. Boyle and Hooke could not replicate the effect in their air pump, and so the
Royal Society (and with it, all of England) consequently rejected Huygens’ claims.
After months of dispute, Huygens finally visited Boyle and Hooke in England in
1663 and managed to reproduce his results on Boyle’s own air pump. Following this,
the anomalous suspension of water was accepted as a matter of fact, and Huygens
was elected a Foreign Member of the Royal Society. In this way, a new form of
presenting scientific experiments and studies emerged, and it enabled the reproduc-
tion of published results, thereby establishing the credibility of the author’s work. In
this context, Robert Boyle is recognized as one of the first scientists to introduce the
Materials and Methods section into scientific publications.

As science progressed, it became more and more obvious that further progress
could only be achieved if new projects and hypotheses were built on results
described by other scientists. Hence, new approaches were needed to report and
standardize experimental procedures and to ensure the documentation of all essential
and relevant information.

The example above speaks to the long-term value of thoroughly reporting
materials and methods to the scientific process. In our own time, there has been
ongoing discussion of a reproducibility crisis in science. When scientists were asked
what contributes to irreproducible research, concerns were both behavioral and
technical (Baker 2016). Importantly, the unavailability of methods, code, and raw
data from the original lab was found to be “always or often” a factor for more than
40% and “sometimes” a factor for 80% of the 1,500 respondents. For in vitro
research, low external validity can partially be explained by issues with incorrect
cell lines that have become too common, including an example of a cell line that may
never have existed as a unique entity (Lorsch et al. 2014). Additionally, the use of
so-called big data requires sophisticated data organization if such data are to be
meaningful to scientists other than the source laboratory. Deficiencies in annotation
of such data restrict their utility, and capturing appropriate metadata is key to
understanding how the data were generated and in facilitating novel analyses and
interpretations.

2 Efforts to Standardize In Vitro Protocols

Today, most in vitro techniques not only require skilled execution and experimental
implementation but also the handling of digital information and large, interlinked
data files, the selection of the most appropriate protocol, and the integration of
quality requirements to increase reproducibility and integrity of study results.
Thus, the management and processing of data has become an integral part of the
daily laboratory work. There is an increasing need to employ highly specialized
techniques, but optimal standards may not be intuitive to scientists not experienced
in a particular method or field.

This situation has led to a growing trend for communities of researchers to define
“minimum information” (MI) checklists and guidelines for the description and
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contextualization of research studies. These MI standards facilitate sharing and
publication of data, increase data quality, and provide guidance for researchers,
publishers, and reviewers. In contrast to the recording/reporting of all the informa-
tion generated during an experiment, MI specifications define specific information
subsets, which need to be reported and should therefore be used to standardize the
content of descriptions of protocols, materials, and methods.

2.1 The MIAME Guidelines

Microarrays have become a critical platform to compare different biological
conditions or systems (e.g., organs, cell types, or individuals). Importantly, data
obtained and published from such assays could only be understood by other
scientists and analyzed in a meaningful manner if the biological properties of all
samples (e.g., sample treatment and handling) and phenotypes were known. These
accompanying microarray data, however, were initially deposited on authors’
websites in different formats or were not accessible at all. To address this issue,
and given the often complex experimental microarray settings and the amount of
data produced in a single experiment, information needed to be recorded systemati-
cally (Brazma 2009).

Thus in 2001, the Minimum Information About a Microarray Experiment
(MIAME) guidelines were developed and published by the Microarray Gene
Expression Data (MGED) Society (now the “Functional Genomics Data [FGED]
Society”). The MIAME guidelines describe the information that allows the interpre-
tation of microarray-based experiments unambiguously and that enables indepen-
dent reproduction of published results (Brazma et al. 2001). The six most critical
elements identified by MIAME are:

• The raw data for each hybridization
• The final processed (normalized) data for the set of hybridizations
• The essential sample annotation, including experimental factors and their values
• The experimental design, including sample data relationships (e.g., which raw

data file relates to which sample, which hybridizations are technical or biological
replicates)

• Sufficient annotation of the array (e.g., the gene identifiers, genomic coordinates,
probe oligonucleotide sequences, or reference commercial array catalogue
number)

• The essential laboratory and data processing protocols (e.g., which normalization
method was used to obtain the final processed data)

Since its publication, the MIAME position paper has been cited over 4,100 times
(as of August 2018; source: Google Scholar), demonstrating the commitment from
the microarray community to these standards. Most of the major scientific journals
now require authors to comply with the MIAME principles (Taylor et al. 2008). In
addition, MIAME-supportive public repositories have been established, which
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enable the deposition and accession of experimental data and provide a searchable
index functionality, enabling results to be used for new analyses and interpretations.
For annotating and communicating MIAME-compliant microarray data, the
spreadsheet-based MAGE-TAB (MicroArray Gene Expression Tabular) format
has been developed by the FGED Society. Documents in this format can be created,
viewed, and edited using commonly available spreadsheet software (e.g., Microsoft
Excel) and will support the collection as well as the exchange of data between tools
and databases, including submissions to public repositories (Rayner et al. 2006).

2.2 The MIBBI Portal

The success of MIAME spurred the development of appropriate guidelines for many
different in vitro disciplines, summarized and collected at the Minimum Information
about Biological and Biomedical Investigations (MIBBI) portal. MIBBI was created
as an open-access, online resource for MI checklist projects, thereby harmonizing
the various checklist development efforts (Taylor et al. 2008). MIBBI is managed by
representatives of its various participant communities, which is especially valuable
since it combines standards and information from several distinct disciplines.

Since 2011, MIBBI has evolved into the FAIRsharing Information Resource
(https://fairsharing.org/collection/MIBBI). Being an extension of MIBBI,
FAIRsharing collects and curates reporting standards, catalogues bioscience data
policies, and hosts a communication forum to maintain linkages between funders,
journals, and leaders of the standardization efforts. Importantly, records in
FAIRsharing are both manually curated by the FAIRsharing team and edited by
the research community. The FAIRsharing platform also provides a historical
overview to understand versions of guidelines and policies, as well as database
updates (McQuilton et al. 2016). In summary, the MIBBI/FAIRsharing initiative
aims to increase connectivity between minimum information checklist projects to
unify the standardization community and to maximize visibility for guideline and
database developers.

Selected examples of minimum information initiatives from different in vitro
disciplines are given in Table 1. Many of these are registered at the MIBBI/
FAIRsharing Information Resource. Some, like Encyclopedia of DNA Elements
(ENCODE) and Standards for Reporting Enzymology Data (STRENDA), serve a
similar mission as the MI projects but do not refer to their output by the MI name.

2.3 Protocol Repositories

The MI approach ensures the adequacy of reported information from each study.
Increasingly, scientific data are organized in databases into which dispersed groups
contribute data. Biopharma databases that capture assay data on drug candidate
function and disposition serve as an example, although the concepts discussed
here apply generally. Databases of bioassay results often focus on final results and
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Table 1 Examples of minimum information checklists from different disciplines, to ensure the
reproducibility and appropriate interpretability of experiments within their domains

Name Scope/goal Developer Link/publication

ENCODE Experimental guidelines,
quality standards, uniform
analysis pipeline, software
tools, and ontologies for
epigenetic experiments

ENCODE
consortium

https://www.
encodeproject.org/
data-standards/ (Sloan
et al. 2016)

MIABE Descriptions of interacting
entities: small molecules,
therapeutic proteins, peptides,
carbohydrates, food additives

EMBL-EBI
industry program

http://www.psidev.
info/miabe (Orchard
et al. 2011)

MIAME Specification of microarray
experiments: raw data,
processed data, sample
annotation, experimental
design, annotation of the array,
laboratory and data processing
protocols

FGED society http://fged.org/
projects/miame/
(Brazma et al. 2001)

MIAPE Minimum set of information
about a proteomics experiment

Human proteome
organization
(HUPO)
proteomics
Standards initiative

http://www.psidev.
info/miape (Binz et al.
2008)

MIFlowCyt Flow cytometry experimental
overview, sample description,
instrumentation, reagents, and
data analysis

International
Society for
Analytical
Cytology (ISAC)

http://flowcyt.
sourceforge.net/
miflowcyt/ (Lee et al.
2008)

MIMIx Minimum information
guidelines for molecular
interaction experiments

HUPO proteomics
Standards initiative

http://www.psidev.
info/mimix (Orchard
et al. 2007)

MIQE Quantitative PCR assay
checklist, including
experimental design, sample,
nucleic acid extraction, reverse
transcription, target
information, oligonucleotides,
protocol, validation, and data
analysis

Group of research-
active scientists

http://www.rdml.org/
miqe.php (Bustin et al.
2009)

MISFISHIE Specifications for in situ
hybridization and IHC
experiments: experimental
design, biomaterials and
treatments, reporters, staining,
imaging data, and image
characterization

NIH/NIDDK stem
cell genome
anatomy projects
consortium

http://mged.
sourceforge.net/
misfishie/ (Deutsch
et al. 2008)

STRENDA Reagents and conditions used
for enzyme activity and enzyme
inhibition studies

STRENDA
consortium

http://www.beilstein-
institut.de/en/projects/
strenda (Tipton et al.
2014)

IHC immunohistochemistry, NIH National Institutes of Health, NIDDK National Institute of
Diabetes and Digestive and Kidney Diseases, PCR polymerase chain reaction
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key metadata, and methodology is typically shared in separate protocols. Protocol
repositories are used to provide accessibility, transparency, and consistency. At its
simplest, a protocol repository may consist of short prose descriptions, like those
used in journal articles or patent applications, and they may be stored in a shared
location. A set of minimal information is necessary, but the unstructured format
makes manual curation essential and tedious. Greater functionality is provided by a
spreadsheet or word processor file template with structured information. For this
medium solution, files can be managed as database attachments or on a web-based
platform (e.g., SharePoint or Knowledge Notebook) that supports filtering,
searching, linking, version tracking, and the association of limited metadata.
Curation is still manual, but the defined format facilitates completeness. The most
sophisticated option is a protocol database with method information contained in
structured database tables. Benefits include the ability to search, filter, sort, and
change at the resolution of each of the contributing pieces of data and metadata, as
opposed to managing the file as a whole. In addition, the protocol database can
mandate the completion of all essential fields as a condition for completing protocol
registration, thereby minimizing the burden on curation. These approaches build on
each other, such that completion of a simple solution facilitates implementation of
the next level of functionality.

3 The Role of Ontologies for In Vitro Studies

Ontologies are a set of concepts and categories that establish the properties and
relationships within a subject area. Ontologies are imperative in organizing sets of
data by enabling the assignment of like and unlike samples or conditions, a necessary
prelude to drawing insights on similarities and differences between experimental
groups. Insufficient ontology harmonization is a limiting factor for the full utilization
of large data sets to compare data from different sources. In addition, ontologies can
facilitate compliance with method-reporting standards by defining minimal informa-
tion fields for a method, such as those in Table 1, whose completion can be set as a
condition for data deposition. Perhaps the most fundamental ontology in the life
sciences is the Gene Ontology (http://www.geneontology.org/) (Gene Ontology
Consortium 2001), on which others build to categorize increasing levels of com-
plexity from gene to transcript to protein. The Ontology for Biomedical
Investigations (http://obi-ontology.org/) was established to span the medical and
life sciences and provides a general scope (Bandrowski et al. 2016). We will discuss
two specific ontologies that are particularly relevant to quality and reproducibility of
in vitro experiments, those that address cells and bioassays.

3.1 Ontologies for Cells and Cell Lines

Nearly all of the in vitro methods discussed in Sect. 2 above start with a cell-derived
sample, and that cell identity is crucial for reproducibility and complete data
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utilization. The Cell Ontology (CL; http://cellontology.org/) provides a structured
and classified vocabulary for natural cell types (Bard et al. 2005; Diehl et al. 2016).
The Cell Line Ontology (CLO; http://www.clo-ontology.org/) was created to cate-
gorize cell lines, defined as a “genetically stable and homogeneous population of
cultured cells that share a common propagation history” (Sarntivijai et al. 2008,
2014). The CL and CLO enable unambiguous identification of the sample source
and are thus critical for data quality. The Encyclopedia of DNA Elements
(ENCODE) Project employed the CL to organize its database of genomic
annotations for human and mouse with over 4,000 experiments in more than
350 cell types (Malladi et al. 2015). The FANTOM5 effort uses the CL to classify
transcriptomic data from more than 1,000 human and mouse samples (Lizio et al.
2015). An appropriate cell ontology is now required as a metadata standard for large
data sets within the transcriptomic and functional genomics fields, and it is
anticipated that additional areas will mandate this (Diehl et al. 2016).

3.2 The BioAssay Ontology

Bioassay databases store information on drug candidates and represent very large
and heterogeneous collections of data that can be challenging to organize and for
which there is a need to continually draw novel insights. To address these and other
challenges, the BioAssay Ontology (BAO; http://bioassayontology.org) was created
as the set of concepts and categories that define bioassays and their interrelationships
(Vempati and Schurer 2004; Visser et al. 2011). The BAO is organized into main
hierarchies that describe assay format, assay design, the target of the assay or the
metatarget, any perturbagen used, and the detection technology utilized. The BAO
can also define if an assay has a confirmatory, counter-screen, or other relationship to
another assay. Excellent ontologies already exist for several aspects used in the
BAO, and so the BAO is integrated with the Gene Ontology (Ashburner et al. 2000),
the Cell Line Ontology (Sarntivijai et al. 2008), protein names from UniProt (http://
www.uniprot.org), and the Unit Ontology (http://bioportal.bioontology.org/
visualize/45500/). Many terms exist beneath the hierarchy summarized above, and
they use a defined vocabulary. These terms constitute a set of metadata that collec-
tively describe a unique bioassay.

3.3 Applications of the BAO to Bioassay Databases

PubChem and ChEMBL are notable publicly accessible databases with screening
results on the bioactivity of millions of molecules. But the manner in which these
data are structured limits their utility. For example, PubChem lists reagent
concentrations in column headers, rather than as a separate field. To address this
and other data organization issues, the BioAssay Research Database (BARD; https://
bard.nih.gov/) was developed by seven National Institutes of Health (NIH) and
academic centers (Howe et al. 2015). The BARD utilizes the BAO to organize
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data in the NIH Molecular Libraries Program, with over 4,000 assay definitions.
In addition, BARD provides a data deposition interface that captures the appropriate
metadata to structure the bioassay data.

Data organization with the BAO enables new analyses and insights. Scientists at
AstraZeneca used the BAO to annotate their collection of high-throughput screening
data and compared their set of assays with those available in PubChem (Zander
Balderud et al. 2015). They extracted metrics on the utilization of assay design and
detection approaches and considered over- vs. underutilization of potential
technologies. BAO terms were also used to identify similar assays from which hits
were acknowledged as frequent false-positive results in high-throughput screening
(Moberg et al. 2014; Schürer et al. 2011).

As an example of a BAO implementation, AbbVie’s Platform Informatics and
Knowledge Management organization negotiated with representatives from the
relevant scientific functions to determine those categories from the BAO that
minimally defined classes of their assays. New assays are created by choosing
from within the defined vocabularies, and the assay names are generated by the
concatenation of those terms, e.g.,
2nd messenger__ADRB2__HEK293__Isoprenaline__Human__cAMP__Antagoni-
st__IC50 for an assay designed to measure antagonism of the β2-adrenergic receptor.
Unforeseen assay variables are accommodated by adding new terms within the same
categories. AbbVie has found that adopting the BAO has reduced the curation
burden, accelerated the creation of new assays, and eased the integration of external
data sources.

4 Specific Examples: Quality Requirements for In Vitro
Research

4.1 Chemical Probes

Chemical probes have a central role in advancing our understanding of biological
processes. They provide the opportunity to modulate a biologic system without the
compensatory mechanisms that come with genetic approaches, and they mimic the
manner in which a disease state can be treated with small-molecule therapeutics. In
the field of receptor pharmacology, some families bear the name of the natural
chemical probe that led to their identification: opiate, muscarinic, nicotinic, etc.
However, not all chemical probes are equal. Davies et al. described the selectivity
of 28 frequently used protein kinase inhibitors and found that none were uniquely
active on their presumed target at relevant concentrations (Davies et al. 2000). A
probe must also be available at the site of action at sufficient concentration to
modulate the target. Unfortunately, peer-reviewed articles commonly use chemical
probes without reference to selectivity, solubility, or in vivo concentration.

To promote the use of quality tools, the Chemical Probes Portal (www.
chemicalprobes.org) was created as a community-driven Wiki that compiles charac-
terization data, describes optimal working conditions, and grades probes on the
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appropriateness of their use (Arrowsmith et al. 2015). New probes are added to the
Wiki only after curation. The portal captures characterization of potency, selectivity,
pharmacokinetics, and tolerability data. It is hoped that use of this portal becomes
widespread, both in terms of the evaluation of probes as well as their application.

4.2 Cell Line Authentication

Cells capable of proliferating under laboratory conditions are essential tools for the
study of cellular mechanisms and to define disease molecular markers and evaluate
therapeutic candidates. But cell line misidentification and cross-contamination have
been recognized since the 1960s (Gartler 1967; Nelson-Rees and Flandermeyer
1977). Recent examples include esophageal cell lines, which were used in over
100 publications before it was shown that they actually originated from other parts of
the body (Boonstra et al. 2010). The first gastric MALT lymphoma cell line (MA-1)
was described as a model for this disease in 2011. Due to misidentification, MA-1
turned out to be the already known Pfeiffer cell line, derived from diffuse large
B-cell lymphoma (Capes-Davis et al. 2013). The RGC-5 rat retinal ganglion cell line
was used in at least 230 publications (On authentication of cell lines 2013) but was
later identified by the lab in which it originated to actually be the same as the mouse
661 W cell line, derived from photoreceptor cells (Krishnamoorthy et al. 2013). A
list of over 480 known misidentified cell lines (as of August 2018) is available from
the International Cell Line Authentication Committee (ICLAC; http://iclac.org/). It
shows that a large number of cell lines have been found to be contaminated – HeLa
cells, the first established cancer cell line, are the most frequent contaminant. It is
therefore critical to ensure that all cell lines used in in vitro studies are authentic. In
fact, expectations for the proper identification of cell lines have been communicated
both by journal editors (On authentication of cell lines 2013) and by the National
Institutes of Health (Notice Regarding Authentication of Cultured Cell Lines,
NOT-OD-08-017 2007).

Short tandem repeat (STR) profiling compares the genetic signature of a
particular cell line with an established database and is the standard method for
unambiguous authentication of cell lines. An 80% or higher match in profiled STR
loci is recommended for cell line authentication following the ANSI/ATCC
ASN-0002-2011 Authentication of Human Cell Lines: Standardization of STR
Profiling (http://webstore.ansi.org). This standard was developed in 2011 by the
American Type Culture Collection (ATCC) working group of scientists from acade-
mia, regulatory agencies, major cell repositories, government agencies, and industry.

To provide support for bench scientists working with cell lines and to establish
principles for standardization, rationalization, and international harmonization of
cell and tissue culture laboratory practices, minimal requirements for quality
standards in cell and tissue culture were defined (Good Cell Culture Practice)
(Coecke et al. 2005), and the “guidelines for the use of cell lines” were published
(Geraghty et al. 2014).
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4.3 Antibody Validation

There is growing attention to the specificity and sensitivity of commercial antibodies
for research applications, with respect to intended application. For example, an
antibody validated for an unfolded condition (Western blotting) may not work in
native context assays (immunohistochemistry or immunoprecipitation) and vice
versa. In addition, lot variation can be a concern, particularly for polyclonal
antibodies and particularly when raised against an entire protein and undefined
epitope. Therefore, validation steps are warranted for each new batch.

A specific example where differences in detection antibodies have provided
conflicting results comes from the field of neutrophil extracellular traps (NETs),
which are extended complexes of decondensed chromatin and intracellular proteins.
Measurement of NETs commonly uses confocal microscopy to image extracellular
chromatin bound to histones, whose arginine sidechains have undergone enzymatic
deimidation (conversion of arginine to citrulline, a process termed citrullination).
There are conflicting reports about the presence and nature of citrullinated histones
in these NET structures (Li et al. 2010; Neeli and Radic 2013). A recent report
compared samples from ten NETosis stimuli using six commercially available
antibodies that recognize citrullinated histones (Neeli and Radic 2016), four of
which are specific for citrullinated histone H3. The report found significant
differences in the number and intensity of Western blot signals detected by these
antibodies, some of which were dependent on the NETosis stimulus. Since each H3
citrullination site is adjacent to a lysine known to undergo epigenetic modification,
changes in epitope structure may be confounding measurements of citrullination,
particularly for antibodies raised against synthetic peptides that lack lysine
modification.

Current efforts to increase the reproducibility and robustness of antibody-based
methods involve information-sharing requirements from journals (Gilda et al. 2015),
high-quality antibody databases (CiteAB 2017), and international frameworks for
antibody validation standards (Bradbury and Pluckthun 2015; GBSI 2017; Uhlen
et al. 2016). In 2016, the International Working Group on Antibody Validation
(IWGAV) identified key criteria for conducting antibody validation and assessing
performance (Table 2) (Uhlen et al. 2016): The IWGAV recommends the use of
several of the procedures described in Table 2 to properly validate an antibody for a
specific application.

4.4 Webtools Without Minimal Information Criteria

Many websites serve as helpful compendiums for a diverse range of biological
disciplines. Some examples include BRENDA (http://www.brenda-enzymes.org)
for enzyme kinetic data, SABIO-RK (http://sabio.villa-bosch.de) for enzymatic
reactions, ToxNet (https://toxnet.nlm.nih.gov/) for chemical toxicology, and
Medicalgenomics (http://www.medicalgenomics.org/) for gene expression and
molecular associations. But a lack of minimal information about experimental

Minimum Information and Quality Standards for Conducting, Reporting, and. . . 187

http://www.brenda-enzymes.org
http://sabio.villa-bosch.de
https://toxnet.nlm.nih.gov/
http://www.medicalgenomics.org/


conditions and nonstandard ontologies often prevent the use of scientific websites to
answer questions about complex systems. For example, BRENDA uses the Enzyme
Commission system as ontology, but multiple gene products fall within the same
reaction category. Also, comparing enzyme-specific activities without greater detail
on methods is challenging. It is important to note, however, that enabling systems-
wide bioinformatics analyses is not the purpose of these sites and was not envisioned
when these tools were developed. Nevertheless, these sites still serve an essential
function by indicating the existence of and references to data not otherwise search-
able and are an evolutionary step forward in the accessibility of biological data.

4.5 General Guidelines for Reporting In Vitro Research

The animal research community has provided a guidance document called Animal
Research: Reporting In Vivo Experiments (ARRIVE) (Kilkenny et al. 2010), spon-
sored by the National Centre for the Replacement, Refinement, and Reduction of
Animals in Research. Similar guidelines for in vitro studies have not been
established. The content from ARRIVE regarding title, abstract, introduction, etc.,
applies equally to in vitro biology. In Table 3 we discuss some salient differences
with the in vivo standards, since a complete set of guidelines on reporting in vitro
experiments would be best done by a dedicated community of practicing scientists.
Additional reporting needs for individual areas of in vitro biology will vary greatly.
Where specific MI criteria are lacking, practitioners are encouraged to work together
to establish such.

Table 2 IWGAV strategy for antibody validation

Strategy Model
Number of
antibodies Analysis

Genetic Knockout or
knockdown cells/
tissues

Antibody of
interest

Antibody-based method of
choice

Orthogonal Several samples Antibody of
interest

Correlation between antibody-
based and antibody-
independent assays

Independent
antibodies

Lysate or tissue
with target protein

Several
independent
antibodies with
different epitopes

Specificity analysis through
comparative and quantitative
analysis

Tagged proteins Lysate or tissue
containing tagged
and native protein

Anti-tag antibody
compared with
antibody of interest

Correlating the signal from the
tagged and non-tagged proteins

Immunocapture
followed by MS

Lysate containing
protein of interest

Antibody of
interest

Target immunocapture and
mass spectrometry of target
and potential binding partners
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Table 3 Guidance for reporting of in vitro studies and methodologies

Ethical statement An ethical statement should indicate the ethical review process and permissions for
any materials derived from human volunteers, including appropriate privacy
assurances

Experimental
procedures

Experimental procedures should follow MI guidelines wherever such exist. Where
nonexistent, the method details given must be sufficient to reproduce the work.
Parameters to consider include buffer (e.g., cell culture medium) and lysis (e.g., for
cell-based studies) conditions, sample preparation and handling, volumes,
concentrations, temperatures, and incubation times. Complex procedures may require
a flow diagram, and novel equipment may require a picture

Materials Commercial materials (cells, antibodies, enzymes or other proteins, nucleic acids,
chemicals) should include the vendor, catalogue number, and lot number.
Non-commercially sourced materials should include the quality control analyses
performed to validate their identity, purity, biological activity, etc. (e.g., sequencing to
confirm the correct sequence of cDNA plasmids). Similar analyses should be
performed on commercial material where not supplied by the vendor, in a manner
appropriate to its intended purpose

Recombinant
proteins

The source of producing recombinant proteins should be disclosed, including the
sequence, expression system, purification, and analyses for purity and bioactivity.
Proteins produced from bacteria should be measured for endotoxin prior to any use on
live cells (or animals)

Inhibitors and
compounds

For inhibitors and chemical compounds, it should be stated whether or not specificity
screenings to identify potential off-target effects have been performed

Cell lines The method for purifying or preparing primary cells should be stated clearly. Cell lines
should have their identity verified as described in Sect. 4.2 above, and cross-
contamination should be checked regularly. Furthermore, routine testing should be
performed for successful control of mycoplasma contamination. The passage number
should be given, as over-passaging of cells can potentially lead to experimental
artifacts. Alternatively, purchasing fresh cells for a set of experiments from a
recognized animal cell culture repository (such as the American Type Culture
Collection, Manassas, Virginia, or the Leibniz Institute DSMZ-German Collection of
Microorganisms and Cell Cultures) may be an attractive option from both a logistic
and cost perspective. Where studies monitor functional changes in live cells, results
should be interpreted in respect to parallel viability/cytotoxicity measurements,
particularly where a loss of function is observed

Antibodies The specificity and possible cross-reactivity of each antibody used need to be
controlled. This applies to internally generated as well as commercially available
antibodies. Relevant procedures to validate an antibody for a specific method or
technique are given in Table 2. Details about performed experiments to investigate
antibody specificity should be described

Study design The size of experimental and control groups should be indicated, and it should
distinguish between biological and technical replicates and between distinct
experiments. It should be stated whether or not randomization steps have been used to
control for the spatial arrangement of samples (e.g., to avoid technical artifacts when
using multi-well microtiter plates) and the order of sample collection and processing
(e.g., when there is a circadian rhythm or time-of-day effect)

Statistical analysis The type of statistical analyses should be stated clearly, including the parameter
represented by any error bars. In addition, an explicit statement of how many
experiments/data points were excluded from analysis and how often experiments were
repeated should be included
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5 Open Questions and Remaining Issues

The measures and initiatives described above for the high-quality annotation of
methods and data sets were designed to increase the total value derived from
(in vitro) biomedical research. However, some open questions and issues remain.

5.1 Guidelines vs. Standards

MI checklists for in vitro research, such as MIAME, are reporting guidelines and
cannot describe all factors that could potentially affect the outcome of an experiment
and should therefore be considered when planning and reporting robust and repro-
ducible studies. MI guidelines address the question “What information is required to
reproduce experiments?” rather than “Which parameters are essential, and what are
potential sources of variation?” However, answering both questions is necessary to
increase data robustness and integrity. Reporting guidelines alone cannot prevent
irreproducible research. A newly established initiative, the RIPOSTE framework
(Masca et al. 2015), therefore aims to increase data reproducibility by encouraging
early discussions of study design and planning within a multidisciplinary team
(including statisticians), at the time when specific questions or hypotheses are
proposed.

To avoid misunderstandings, it is essential to distinguish between “guidelines”
and “standards.” Broadly written, guidelines do not specify the minimum threshold
for data recording and reporting, and for study interpretation, but rather serve as an
important starting point for the development of community-supported and vetted
standards. Standards, in contrast, must define their elements clearly, specifically, and
unambiguously, including the information detail necessary to fulfill all standard
requirements (Burgoon 2006). As an example, the MIAME guidelines are often
referred to as a standard. However, all possible experimental settings and
specifications (see Sect. 2.1) are not defined by MIAME, leading to potentially
alternative interpretations and therefore heterogeneous levels of experimental detail.
Consequently, different MIAME-compliant studies may not collect or provide the
exact same information about an experiment, complicating true data sharing and
communication (Burgoon 2006).

5.2 Compliance and Acceptance

To achieve the highest acceptance and compliance among scientists, journals,
database curators, funding agencies, and all other stakeholders, MI guidelines need
to maintain a compromise between detail requirements and practicality in reporting,
so that compliance with the developed guidelines remains practical, efficient, and
realistic to implement. An evaluation of 127 microarray articles published between
July 2011 and April 2012 revealed that ~75% of these publications were not
compliant with the MIAME guidelines (Witwer 2013). A survey of scientists
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attending the 2017 European Calcified Tissue Society meeting found that a majority
were familiar with performing RT-qPCR experiments, but only 6% were aware of
the MIQE guidelines (Bustin 2017). These examples show that the engagement of
and comprehensive vetting by the scientific community is critical for the successful
adoption of workable guidelines and standards. Additional challenges to compliance
involve the publication process. Some journals impose space limitations but don’t
support supplemental material. Some journals may encourage MI approaches in their
instructions to authors, but reviewers may not be sufficiently versed in all of the
reported methodology to adequately critique them or to request compliance with MI
approaches.

5.3 Coordinated Efforts

The Minimum Information checklists are usually developed independently from
each other. Consequently, some guidelines can be partially redundant and
overlapping. Although differences in wording/nomenclature and substructuring
will complicate an integration, these overlaps need to be resolved through a coordi-
nated effort and to the satisfaction of all concerned parties.

5.4 Format and Structured Data

The three basic components of a modern reporting structure are MI specifications
(see Sect. 2), controlled vocabularies (see Sect. 3), and data formats (Taylor 2007).
Most MI guidelines do not provide a standard format or structured templates for
presenting experimental results and accompanying information, for transmitting
information from data entry to analysis software, or for the storage of data in
repositories. For some guidelines (e.g., MIAME and the MAGE-TAB format),
data exchange formats were developed to support scientists, but finding the perfect
compromise between ease of use and level of complexity so that a standard format
for most guidelines is accepted by the research community still remains a challenge.

6 Concluding Remarks

Undoubtedly, requirements regarding reporting, ontologies, research tools, and data
standards will improve robustness and reproducibility of in vitro research and will
facilitate the exchange and analysis of future research. In the meantime, all different
stakeholders and research communities need to be engaged to ensure that the various
guideline development projects and initiatives are coordinated and harmonized in a
meaningful way.
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Abstract
Data quality, reproducibility and reliability are a matter of concern in many
scientific fields including biomedical research. Robust, reproducible data and
scientific rigour form the foundation on which future studies are built and
determine the pace of knowledge gain and the time needed to develop new and
innovative drugs that provide benefit to patients. Critical to the attainment of this
is the precise and transparent reporting of data. In the current chapter, we will
describe literature highlighting factors that constitute the minimum information
that is needed to be included in the reporting of in vivo research. The main part of
the chapter will focus on the minimum information that is essential for reporting
in a scientific publication. In addition, we will present a table distinguishing
information necessary to be recorded in a laboratory notebook or another form of
internal protocols versus information that should be reported in a paper. We will
use examples from the behavioural literature, in vivo studies where the use of
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anaesthetics and analgesics are used and finally ex vivo studies including
histological evaluations and biochemical assays.

Keywords
Behavior · Data quality · In vivo · Publication · Reporting · Reproducibility ·
Standards

1 Introduction

Data quality, reproducibility and reliability are a matter of concern in many scientific
fields including biomedical research. Robust, reproducible data and scientific rigour
form the foundation on which future studies are built and determine the pace of
knowledge gain and the time needed to develop new and innovative drugs that
provide benefit to patients (Freedman and Gibson 2015). In particular, research
involving animals is essential for the progression of biomedical science, assuming
that experiments are well designed, performed, analysed, interpreted as well as
reported.

However, it has been described many times over the last few years that in
preclinical research – particularly preclinical animal research – many findings
presented in high-profile journals are not reliable and cannot be replicated (Begley
and Ellis 2012; Peers et al. 2012; Prinz et al. 2011). This has led to the so-called
reproducibility crisis which, according to some, may largely be due to the failure to
adhere to good scientific and research practices and the neglect of rigorous and
careful application of scientific methods (Begley and Ioannidis 2015; Collins and
Tabak 2014). In this context, various reasons have been suggested to contribute to
and perhaps explain the lack of reliability and reproducibility in preclinical research
including inadequacies in the design, execution and statistical analysis of
experiments as well as deficiencies in their reporting (Glasziou et al. 2014; Ioannidis
et al. 2014; Jarvis and Williams 2016).

It has been reported that only a minority of animal studies described in the
scientific literature use critical experimental design features such as randomisation
and blinding despite these components being essential to the production of robust
results with minimal risk of experimental bias (Hirst et al. 2014; Macleod et al.
2015). Furthermore, in a study by Bebarta et al., it was described that studies, which
did not utilise randomisation and blinding, were more likely to display differences
between control and treatment groups, leading to an overestimation of the magnitude
of the treatment effects (Bebarta et al. 2003). Another kind of bias that may
compromise the validity of preclinical research is reporting bias, consisting of
publication bias as well as selective analysis and outcome reporting bias. In many
cases, animal studies with negative, neutral or inconclusive results are not reported at
all (publication bias), or only the analysis yielding the best statistically significant
effect is selectively presented from a host of outcomes that were measured (selective
analysis and outcome reporting bias) (Tsilidis et al. 2013). This under-representation
of negative research findings can be misleading concerning the interpretation of
presented data, often associated with falsely inflated efficacy estimates of an
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intervention (Korevaar et al. 2011). Furthermore, unnecessary repetitions of similar
studies by investigators unaware of earlier efforts may result.

In 2005, Ioannidis stated that it can be proven that most published research
findings are irreproducible or even false due to the incorrect and inadequate use of
statistics for their quantification. Specifically, underlying factors such as flexible
study designs, flexible statistical analyses and the conductance of small studies with
low statistical power were described (Button et al. 2013; Ioannidis 2005). Along
these lines, Marino expressed the view that poor understanding of statistical
concepts is a main contributory factor to why so few research findings can be
reproduced (Marino 2014). Thus, it is urgently required that best practices in
statistical design and analysis are incorporated into the framework of the scientific
purpose, thereby increasing confidence in research findings.

Additionally, transparent, clear and consistent reporting of research involving
animals has become a further substantial issue. Systematic analysis has revealed that
a significant proportion of publications reporting in vivo research lack information
on study planning, study execution and/or statistical analysis (Avey et al. 2016;
Kilkenny et al. 2009; Landis et al. 2012). This failure in reporting makes it difficult
to identify potential drawbacks in the experimental design and/or data analysis of the
underlying experiment, limiting the benefit and impact of the findings. Moreover,
when many of these factors are intertwined, this can lead to negative consequences
such as higher failure rates and poor translation between preclinical and clinical
phases (Hooijmans and Ritskes-Hoitinga 2013).

Importantly, from an ethical perspective, laboratory animals should be used
responsibly. In this context, it is of utmost importance to implement Russell and
Burch’s 3Rs (reduction, refinement, replacement) principle in the planning and
execution of animal studies (Carlsson et al. 2004; Tannenbaum and Bennett 2015;
Wuerbel 2017) as well as more efficient study designs, improved research methods
including experimental practice, animal husbandry and care. Also the availability of
sufficient information and detailed descriptions of animal studies may help to
improve animal welfare and to avoid unnecessary animal experiments and wasting
animals on inconclusive research.

In the past decade, several guidelines and frameworks have been released in
order to improve the scientific quality, transparency and reproducibility of animal
experiments (Hooijmans et al. 2010; Kilkenny et al. 2010a; Nature 2013; NIH,
Principles and Guidelines for Reporting Preclinical Research). The ARRIVE (Ani-
mal Research: Reporting In Vivo Experiments) guidelines focus on the clear and
transparent reporting of the minimum information that all scientific publications
reporting preclinical animal research should include such as study design, experi-
mental procedures and specific characteristics of the animals used (Kilkenny et al.
2010b). Similarly, the Gold Standard Publication Checklist (GSPC) also aims at
improving the planning, design and execution of animal experiments (Hooijmans
et al. 2011). The ARRIVE guidelines were launched in 2010 by a team led by the UK
National Centre for the Replacement, Refinement and Reduction of Animals in
Research (NC3Rs) and have steadily gained credence over the past years. Endorsed
by more than 1,000 biomedical journals, the ARRIVE guidelines are now the most
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widely accepted key reporting recommendations for animal research (NC3Rs,
ARRIVE: Animal Research: Reporting In Vivo Experiments). In addition, various
leading scientific journals have begun to change their review practices and place
greater emphasis on experimental details prompting authors to report all relevant
information on how the study was designed, conducted and analysed (Curtis and
Abernethy 2015; Curtis et al. 2015; McGrath and Lilley 2015; McNutt 2014a, b;
Nature 2013). Such initiatives may help to ensure transparency and reproducibility
of preclinical animal research, thereby improving its reliability and predictive value
as well as maximising a successful translation into clinically-relevant applications.
However, the compliance with these guidelines remains low several years later. An
evaluation of papers published in Nature and PLOS journals in the 2 years before
and after the ARRIVE guidelines were communicated suggests that there has been
only little improvement in reporting standards and that authors, referees and editors
generally are ignoring the guidelines (Baker et al. 2014). Quite recently, a similar
analysis by Leung et al. has shown that the reporting quality in animal research
continues to be low and that supporting the ARRIVE guidelines by several journals
has not resulted in a considerable improvement of reporting standards (Leung et al.
2018). Obviously, despite the widespread endorsement of the guiding principles by
multiple journals in various research areas, the impact of this endorsement on the
quality of reporting standards of animal studies is only modest (Avey et al. 2016;
Delgado-Ruiz et al. 2015; Liu et al. 2016; Schwarz et al. 2012; Ting et al. 2015). In
part, this may be caused by the fact that the recommendations have limitations
regarding feasibility and applicability across the diversity of scientific fields that
comprise biomedical research making them impractical for some kind of studies.
Moreover, researchers may not be convinced that it is necessary to apply effort in
order to achieve maximum transparency and reproducibility of animal-based
research. It is crucial to increase the awareness of the existence of animal research
reporting guidelines as well as the importance of their implementation. A serious
problem of guiding principles in general and the ARRIVE guidelines in particular is
that most biomedical research journals endorse them but do not rigorously enforce
them by urgently requiring comprehensive and detailed reporting of the performed
research. A direct consequence of enforced compliance may be increased time and
financial burdens making an balanced weighting between what is ideal and what is
feasible and practical absolutely essential (Leung et al. 2018).

Nevertheless, the scientific community needs effective, practical and simple tools,
maybe in the form of guidelines or checklists, to promote the quality of reporting
preclinical animal research. Ideally, such guiding principles should be used as
references earlier in the research process before performing the study, helping
scientists to focus on key methodological and analytical principles and to avoid
errors in the design, execution and analysis of the experiments.

A recent study by Han et al. showed that the mandatory application of a checklist
improved the reporting of crucial methodological details, such as randomisation,
blinding and sample size estimation, in preclinical in vivo animal studies (Han et al.
2017). Such positive examples support optimism that when reporting is distinctly
required, important improvements will be achieved (Macleod 2017). Accordingly,
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the strict adherence to reporting guidelines will become useful to address the
concerns about data reproducibility and reliability that are widely recognised in
the scientific community.

In the present chapter, we discuss the minimum information that should be
provided for an adequate description of in vivo experiments, in order to allow others
to interpret, evaluate and eventually reproduce the study. The main part of the
chapter will focus on the minimum information that is essential for the reporting
in a scientific publication. In addition, a table will be presented distinguishing
information necessary to be recorded in a laboratory notebook or another form of
internal record versus information that should be reported in a paper. Examples of
specific research areas such as behavioural experiments, anaesthesia and analgesia
and their possible interference with experimental outcomes as well as ex vivo
biochemical and histological analysis will be described.

2 General Aspects

Over the last decade, several guiding principles, such as the GSPC and the ARRIVE
guidelines, have been developed in order to improve the quality of designing,
conducting, analysing and particularly reporting preclinical animal research. These
recommendations have in common that all major components of animal studies that
can affect experimental outcomes, including conditions of animal housing, hus-
bandry and care, have to be efficiently reported. In the following section, the most
important aspects mentioned in these guidelines are summarised (Hooijmans et al.
2010; Kilkenny et al. 2010a). Finally, a table will be presented comparing informa-
tion that is necessary to be recorded in a laboratory notebook or another form of
internal protocols versus information that should be reported in a scientific publica-
tion (Table 1).

At the beginning of a preclinical animal study report, readers should be
introduced to the research topic within the context of the scientific area as well as
the motivation for performing the current study and the focus of the research
question, specific aims and objectives. Primarily, it should be explained why the
specific animal species and strain have been chosen and how this animal model can
address the scientific hypotheses, particularly with regard to the clinical relevance of
the project.

Any studies involving the use of laboratory animals must be formally approved
by national regulatory authorities. Therefore, it is necessary to provide information
indicating that the protocol used in the study has been ethically reviewed and
approved. Additionally, any compliance to national or institutional guidelines and
recommendations for the care and use of animals that cover the research should be
stated (Jones-Bolin 2012).

In order to allow the replication of a reported study, a detailed description of the
experimental animals has to be provided, including species, strain (exact genetic
code/nomenclature), gender, age (at the beginning and the end of the experiment),
weight (at the start of the experiment) and the origin and source of the animals.
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Table 1 Necessary information for including in a publication and recording in a laboratory
notebook

Publication
Laboratory
notebook

(A) Experimental model

Model name ✓ ✓

Background and purpose of test ✓ ✓

Species ✓ ✓

Sex of animals used ✓ ✓

Genetic background

• Standard name ✓ ✓

• Original and current parental strain ✓

• Number of backcrosses from original to current ✓

Genetic manipulation

• Knockout/transgenic ✓ ✓

• Constitutive/inducible ✓ ✓

• Cre line ✓ ✓

• Doxycycline/tamoxifen ✓ ✓

Previous use in an experiment

• Drug and test naïve Y/N ✓ ✓

• Description of previous procedures including details of drug
washout period/return to baseline values

✓ ✓

Source of animals

• Name of commercial vendor/collaborator/in-house breeding ✓ ✓

• Age and weight when received ✓ ✓

• Health/immune status ✓ ✓

In-house colony

• Breeding/husbandry ✓ ✓

• Breeding scheme (state female genotype first) ✓

• Duos/trios ✓

• Are all animals littermates Y/N (if Y then how) ✓

• How many cohorts are planned for each study ✓

• How far apart are the cohorts ✓

• Are all experimental groups equally represented in all cohorts
(Y/N)

✓

• How often are breeders changed ✓

• Birth check frequency ✓

• Sexing age ✓

• Age at weaning ✓

• Are litters mixed at weaning ✓

Age ✓

• At start/end of experiment ✓ ✓

(B) Experimental details

Habituation to vivarium period (days) (if sourced from external)
prior to experimental procedure

✓ ✓

Assignment to experimental groups

(continued)
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Table 1 (continued)

Publication
Laboratory
notebook

• Randomisation method ✓ ✓

• Matching for group assignment (name of variable matched) ✓

• Procedures to minimise bias (e.g. litter, cohort, cage, treatment
order)

✓

• SOPs available (Y/N) ✓

Experimenter blinding procedures

• Procedures to keep treatments blind ✓ ✓

• Procedures to keep experimenter blind ✓ ✓

• Blinding code and decoding timeline ✓

• SOPs available ✓

Training of experimenters

• Are experimenters trained and certified in each procedure? ✓ ✓

• Method of training and certification ✓

• How often is certification renewed? ✓

Sample

• Sample size ✓ ✓

• Power analysis conducted for each measure for each test ✓ ✓

Experimental protocols for each test ✓ ✓

• Description ✓ ✓

• Tests order and rationale ✓ ✓

• Duration of habituation to testing room ✓ ✓

• SOPs available (Y/N) ✓

Food/water access during experiment (description) ✓ ✓

• Ad libitum or restricted access to food and water during
experiment

✓ ✓

Adverse/noteworthy events during test ✓ ✓

Exclusion criteria ✓ ✓

Data processing and analysis ✓ ✓

• QC methods ✓

• Primary and secondary measures for each test ✓ ✓

• Analysis for each measure for each test ✓ ✓

• Check to see if data meets statistical test assumptions ✓ ✓

• Treatment of outliers ✓ ✓

• Experimental units of analysis (animal/cage/litter) ✓ ✓

• Notebooks and data storage ✓

Drug ✓ ✓

Name of drug used ✓ ✓

Source of drug ✓ ✓

Drug batch/sample number ✓ ✓

Storage prior to preparation ✓ ✓

Drug preparation ✓

• Vehicle name and details of preparation ✓ ✓

(continued)
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Table 1 (continued)

Publication
Laboratory
notebook

• Doses and rational ✓ ✓

• Dose volume ✓ ✓

• Route of administration ✓ ✓

• Time of administration and pretreatment time ✓ ✓

• Drug storage (cold/dark/duration) ✓ ✓

Blood sampling time and method (for bioanalysis)

• Blood sampling method ✓ ✓

• Blood sample volume ✓ ✓

• Type of collection tube ✓ ✓

• Plasma/serum preparation method ✓ ✓

• Plasma/serum freezing and storage ✓ ✓

Anaesthesia method and monitoring ✓ ✓

Euthanasia method and monitoring ✓ ✓

Genotyping tissue collection

• Age at genotyping ✓ ✓

• Method of genotyping ✓ ✓

• Is genotyping repeated at end of study? (Y/N) ✓ ✓

Tail samples kept (Y/N) ✓

Animal ID

• Method used to ID animals, frequency of checking ✓

(C) Animal facility

Microbial/pathogen status (if specific pathogen-free (SPF)
specify pathogens)

✓ ✓

Housing

• Housing room used ✓

• Experimental rooms used ✓

• Species/sex of animals housed in same room ✓

• Caging type ✓ ✓

• Controls in place for position of cages? (e.g. light differences,
proximity to door)

✓

• Use of ventilated racks ✓ ✓

• Number of animals per cage ✓ ✓

• Are cages homogeneous for genotype ✓ ✓

• Are animals regrouped at any time? If so, at what age? ✓ ✓

Enrichment ✓

• Type of bedding ✓ ✓

• Toys in cage? Running wheel? ✓ ✓

• Shredded paper? ✓ ✓

• Igloos? Other? ✓ ✓

Light/dark cycle ✓

• Time of lights on/off ✓ ✓

• Light/dark change with dawn and dusk light gradient? If Y,
over what time frame?

✓ ✓

(continued)
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These biological variables are scientifically important since they often represent
critical factors affecting health or disease of the animals and therefore may influence
research outcomes (GV-SOLAS 1985; Oebrink and Rehbinder 2000). For the same
reason, it is also essential to comment on the animals’ experience and to state if they
are drug naïve or if they have received any previous procedures or treatments.
Additionally, information about the health, microbiological and immune status of
the animals can be of high relevance for study outcomes and the ability to replicate
findings and therefore should be given (GV-SOLAS 1999). This means, e.g. to
depict that the animals are kept under specific pathogen-free (SPF) conditions
(accompanied by a list of pathogens excluded) and that their health and
microbiological status is checked and monitored according to the FELASA
recommendations (Nicklas et al. 2002). When using genetically modified animals,
it is important to describe their genetic background, how these animals were
generated and which control animals were selected.

There is increasing evidence that elements of the laboratory environment as well
as housing and husbandry practices can significantly affect the animals’ biology and

Table 1 (continued)

Publication
Laboratory
notebook

Music/sound used. If so, specify details ✓ ✓

Humidity ✓ ✓

Type of chow ✓ ✓

Water (acidified/tap/distilled/autoclaved/filtered/other?) ✓ ✓

Air exchange frequency ✓

Handling

Frequency and duration of handling ✓ ✓

Husbandry

• No. cage changes/week ✓

• No. health checks/week ✓

Health reports from facility ✓

Personal protective equipment, description ✓

(D) Approvals and authorisation

For example, IACUC or AAALAC approval number and date ✓ ✓

Ethical approval statement/animal license application ✓ ✓

(E) Equipment

Description of equipment used ✓ ✓

• Model number ✓ ✓

• Vendor ✓ ✓

Calibration

• Method ✓ ✓

• Frequency ✓ ✓

Adapted from Brunner et al. (2016)
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ultimately research outcomes (Hogan et al. 2018; Reardon 2016). This implicates an
exact specification of the environmental conditions in which the animals were
housed and where the experiments were conducted. The animal facility should be
described concerning temperature, relative humidity, ventilation, lighting (light/dark
cycle, light intensity) and noise (Baldwin et al. 2007; Speakman and Keijer 2012;
Swoap et al. 2004; Van der Meer et al. 2004). In more detail, the specific housing
conditions of the animals should be represented including type and size of the cages,
bedding material, availability and type of environmental enrichment, number of
animals per cage (and reasons for individual housing when applicable) as well as
frequency of cage changes and handling procedures (Balcombe et al. 2004;
Nicholson et al. 2009; Perez et al. 1997; Rock et al. 1997; van Praag et al. 2000).
In addition, the reporting of nutrition and water regimes needs to be specified
regarding the type (composition, special diets, purification) as well as access to
food and water (ad libitum, restricted, amount of food/water and frequency and time
of feeding or water supply).

When describing the procedures carried out in animal studies, several aspects
require thorough consideration and need to be presented for each experiment and
each experimental group, including controls. When has the experiment been
performed (day and time of intervention and time interval between intervention
and data sampling or processing)? Where has the experiment been performed (home
cage, laboratory, special device/equipment for investigation)? What kind of inter-
vention has been carried out? Here, details about the methodological techniques such
as surgical procedures or sampling methods (including specialist equipment and
suppliers) should be provided. Importantly, drugs and compounds used in the
experiments need to be specified concerning name, manufacturer and concentration
as well as the formulation protocol, dosage, application volume, frequency and route
of administration. Additionally, when anaesthetics and analgesics are required for
animal welfare reasons, it is crucial to include information about the name of these
agents, administered doses, route and frequency of application as well as monitoring
procedures of the animals’ physiological signs that are used to guarantee a sufficient
level of anaesthesia and analgesia (Flecknell 2018; Gaertner et al. 2008). Similarly,
the method of euthanasia applied at the end of the study should be described (Sivula
and Suckow 2018).

To ensure the quality and validity of preclinical animal research, it is crucial to
indicate if the performed study is a confirmatory or hypothesis-testing one and to
implement appropriate experimental study designs (Johnson and Besselsen 2002).
This comprises a clear definition of the experimental unit (individual animal or group
of animals in one cage) as well as the number of treatment and control (positive,
negative, vehicle) groups. In this context, the reporting of animal numbers (total
number per experiment as well as per experimental group) is essential to assess
biological and statistical significance of the results and to re-analyse the data.
Additionally, any power and sample size calculations used for the determination
of adequate animal numbers that allow the generation of statistically meaningful
results should be reported (Button et al. 2013). Moreover, any actions undertaken to
minimise the effects of subjective bias when allocating animals to experimental
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groups (e.g. randomisation) and when assessing results (e.g. blinding) should be
stated (Bello et al. 2014; Hirst et al. 2014; Moser 2019). Randomisation is the best
method to achieve balance between treatment and control groups, whereas blinded
assessment of outcomes (assessing, measuring or quantifying) improves qualitative
scoring of subjective experimental observations and promotes comparable handling
of data. Both strategies enhance the rigour of the experimental procedure and the
scientific robustness of the results.

When reporting the results of the experiments, statistics needs to be fully
described including the statistical method/test used to analyse the primary and
secondary outcomes of the study (Marino 2014). The exact number of analysed
animals and a measure of precision (mean, median, standard deviation, standard
error of the mean, confidence interval) should be presented. This is of high relevance
for interpreting the results and for evaluating the reliability of the findings. Impor-
tantly, the number of excluded animals as well as reasons and criteria to exclude
them from the experiment, and hence analysis, should be well documented. Further-
more, the description of outcomes should comprise the full spectrum of positive and
negative results as well as whether there were attempts to repeat or confirm the data.
Equally, all relevant adverse events and any modifications that were made to the
experimental protocol in order to reduce these unwanted effects should be reported.

Finally, when discussing and interpreting the findings, it is important to take into
account the objectives and hypotheses of the study as predetermined in the experi-
mental study design. Additionally, a comment on the overall scientific relevance of
the outcomes as well as their potential to translate into clinical significance should be
included. In order to demonstrate how animal welfare issues have been addressed in
the current study, any implications of the experimental methods or results for the
replacement, refinement or reduction of the use of laboratory animals in research
need to be described (Taylor 2010).

In conclusion, the meaningful and accurate reporting of preclinical animal studies
encompasses a plethora of aspects, ranging from a detailed description of the
experimental animal to a complete documentation of the statistical analysis. Creating
transparency in this way can help to evaluate studies in terms of their planning,
methodology, statistical verification and reproducibility. It is highly recommended
to make all raw data, analyses and protocols available to the whole research
community in order to provide insight into the full workflow of the scientific project.

3 Behavioural Experiments

Behavioural animal studies are of great importance to increase the scientific knowl-
edge about the complex processes underlying animal behaviour in general as well as
to investigate potential drug effects on behavioural outcomes. Furthermore, transla-
tional research aims to identify disease-relevant endpoints in behavioural animal
studies that are robust, reliable and reproducible and ultimately can be used to assess
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the potential of novel therapeutic agents to treat human diseases (Sukoff Rizzo and
Silverman 2016).

However, performing behavioural experiments in animals is largely challenging
for scientists since studies of this nature are extremely sensitive to external and
environmental factors (Crabbe et al. 1999). Specific housing conditions, e.g. the lack
of environmental stimulation, can interfere with brain development and selectively
alter brain functions, thereby affecting the expression of certain behaviour (Wuerbel
2001). Resulting stereotypies and other abnormal repetitive behaviours can be
severely confounding in behavioural experiments and have an impact on the validity,
reliability and reproducibility of scientific outcomes (Garner 2005).

Additionally, when measuring behaviour in animals, there are multiple other
factors that may influence the generation of a behavioural response which can be
classified as ‘trait’, ‘state’ and ‘technical’ factors (Sousa et al. 2006). ‘Trait’ factors
include genetic (e.g. genetic background, gender) as well as developmental
characteristics (e.g. stress experience, handling, housing conditions, social hierar-
chy) of the animals. ‘State’ factors comprise the time of the experiment, the experi-
ence and training status of the investigator, characteristics of the animal (e.g. age,
health status, pharmacological treatment) as well as features of the experimental
setup (e.g. construction, illumination, test environment, cleansing). ‘Technical’
factors encompass data acquisition (e.g. automated vs. manual observation, calibra-
tion, choice of behavioural parameters) as well as data analysis (e.g. distribution,
normalisation of data).

In preclinical research settings, it is difficult to standardise all such factors, which
may contribute to the poor reproducibility of behavioural observations in animals
across different laboratories (Wahlsten 2001). Standardisation is assumed to mini-
mise the variability of results and to increase sensitivity and precision of the
experimental procedure. However, contrary to the assumption that rigorous
standardisation of animal experiments may help to ensure their reproducibility, it
has been proposed that rather, systematic variation of experimental conditions
(heterogenisation) can lead to the generation of robust and generalisable results
across behavioural animal studies since the external validity is enhanced, thereby
improving reproducibility (Richter et al. 2010; Voelkl et al. 2018; Wuerbel 2000).
Nevertheless, considering that a strict and universal standardisation of laboratory
environmental and experimental conditions is exceptionally unlikely, it is of major
importance to take into account any possible determinants that might exert an effect
on animals’ performance when designing, conducting and analysing behavioural
experiments and to report these factors accurately and transparently.

As mentioned above, there is increasing evidence that the laboratory environment
and distinct husbandry and housing conditions may influence animal welfare and
hence behaviour. Moreover, test outcomes of behavioural animal studies are highly
dependent on small but important details regarding these conditions that are usually
poorly reported. One such example is light conditions: light is a fundamental
environmental factor regulating animal activity and physiology, and it has been
found in rats that intense light conditions can lead to retinal damage, suppression of
social play behaviour and locomotion as well as dissociation of circadian rhythms
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(Castelhano-Carlos and Baumans 2009). Similarly, environmental sounds that are
inevitably present in animal research facilities also exert considerable effects on
animals’ physiology and behaviour influencing sleeping patterns, locomotor activ-
ity, learning and anxiety reactions. Provision of a stable and controlled light and
noise environment for the animals will contribute to their wellbeing and to the
reproducibility of experimental outcomes, making a clear reporting of light and
noise conditions obligatory.

Standard husbandry practices such as regularly performed cage-changing as well
as commonly-used experimental procedures such as injections can significantly
affect behavioural parameters in rodents, as measured by increased arousal
behaviour and locomotor activity (Duke et al. 2001; Gerdin et al. 2012). These
stress-related responses may have a considerable influence on the validity and
quality of experimental outcomes and should be considered by researchers when
designing study protocols and comparing data. Similarly, it has been shown that a
change in housing conditions, including a combination of standard vs. individually
ventilated cages and single vs. social housing, has a major impact on several
physiological parameters and behavioural features of mice such as body weight,
locomotor activity and anxiety-related behaviour (Pasquarelli et al. 2017). Thus, it is
mandatory to clearly state as well as maintain a well-defined housing protocol during
the experiment in order to ensure better comparison, reliability and reproducibility of
experimental results across research facilities.

Environmental cage enrichment, which should be transparently reported when
describing animals’ housing conditions, is strongly recommended by various
guidelines regulating laboratory animal care and accommodation, as it is reported
to enhance animal welfare, to protect against the development of stereotypies, to
reduce anxiety and to positively influence brain development as well as learning and
memory behaviour (Simpson and Kelly 2011). And indeed, it has been shown in rats
and mice that environmental enrichment does not result in enhanced individual data
variability nor generate inconsistent data in replicate studies between multiple
laboratories, indicating that housing conditions can be improved without impacting
the quality or reproducibility of behavioural results (Baumans et al. 2010; Wolfer
et al. 2004).

Much evidence concerning the reproducibility of behavioural animal studies
comes from the area of rodent phenotyping (Kafkafi et al. 2018). Some behavioural
phenotypes, such as locomotor activity, can be highly reproducible across several
laboratories, suggesting high stability and therefore better reproducibility (Wahlsten
et al. 2006). In contrast, other behavioural phenotypes, such as anxiety-like
behaviour, are more problematic to measure since they show increased susceptibility
to a multitude of environmental factors that can affect the animals’ performance.
Indeed, it has been reported that animal handling procedures, particularly the specific
handling method itself, can elicit profound effects on animals’ anxiety levels and
stress responses, indicating that the use of handling methods that will not induce
strong anxiety responses will minimise confounding effects during experiments
(Hurst and West 2010).
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One of the most commonly used methods to investigate anxiety behaviour in
rodents is the elevated plus maze (EPM) test (Lister 1987; Pellow et al. 1985).
Besides strain, gender and age differences, it has been shown that the manipulation
of the animals prior to the experiment (e.g. exposure to stressors, housing, handling
procedures) and the averseness of the test conditions themselves (e.g. increased light
levels) as well as repeated testing in the EPM can strongly influence the manifesta-
tion of anxiety behaviour (Bessa et al. 2005; File 2001; Hogg 1996). These crucial
factors should not be excluded from experimental descriptions when reporting.
Additionally, illumination of the EPM is a critical aspect that needs to be clearly
specified. In fact, Pereira et al. concluded that it is not the absolute level of
luminosity upon the arms, but the relative luminosity between the open and
closed arms that predicts the behavioural performance of rats in the maze (Pereira
et al. 2005).

Overall, it has been suggested that animal behaviour that is more closely linked to
sensory input and motor output will probably be less affected by minimal
modifications within the laboratory environment, whereas behaviour that is
associated with emotional and social processes will be more sensitive (Wahlsten
et al. 2006).

4 Anaesthesia and Analgesia

For numerous animal experiments such as surgeries or imaging studies, the use of
anaesthetics and analgesics in order to reduce animal suffering from pain and distress
is an ethical obligation and crucial to the 3Rs concept (Carbone 2011). However, it is
known that these drugs (as well as untreated pain itself) can severely affect the
animals’ biology and physiology, thereby influencing experimental data and
introducing variability into research outcomes. Focusing on animal pain manage-
ment means both an issue of generating high-quality, reproducible data and a
substantial animal welfare concern. Dealing with this ethical and methodological
conflict can pose a challenging task for scientists.

The ARRIVE guidelines recommend the reporting of anaesthesia and analgesia in
order to achieve a full and detailed description of the experimental procedures
performed in preclinical animal studies and to allow the critical evaluation and
reproduction of published data. However, there is evidence that the current scientific
literature lacks important details concerning the use of animal anaesthetics and
analgesics, underestimating their potential interference with experimental results
(Carbone and Austin 2016; Uhlig et al. 2015). In many cases, it is not clear whether
scientists actively withhold treatment of animals with anaesthetic or analgesic drugs
or just fail to include this information in the reporting, perhaps due to assumed
insignificance to the experimental outcome. This creates the false impression that the
selection of appropriate anaesthetic and analgesic regimens is not considered as a
crucial methodological concern for generating high-quality research data. Further-
more, under-reporting of anaesthesia and pain management may also shape ongoing
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practice among researchers and encourage under-treatment of animals, which
represents a serious problem concerning animal welfare.

Surgical pain and insufficient analgesia act as stressors and can elicit various
effects on the animals’ immune system, food and water consumption, social
behaviour, locomotor activity as well as metabolic and hormone state, among others,
which may all influence the experimental outcomes of animal studies (Leach et al.
2012; Liles and Flecknell 1993). The use of anaesthetics and analgesics relieves
surgical pain, thus contributing to the refinement of the experimental methods.
Additionally, following the surgical procedure, an appropriate long-term pain man-
agement, which could last for several days, is required to ensure animal wellbeing.
However, anaesthetic and analgesic drugs themselves may also confound experi-
mental results, e.g. by regulating inflammatory pathways or exerting immunomodu-
latory effects (Al-Hashimi et al. 2013; Fuentes et al. 2006; Galley et al. 2000;
Martucci et al. 2004). In cancer studies on tumour metastasis in rats, it has been
shown that analgesic drugs such as tramadol are able to prevent the effect of
experimental surgery on natural killer cell activity and on the enhancement of
metastatic diffusion, which needs to be taken into account when using this kind of
animal model (Gaspani et al. 2002). Furthermore, as demonstrated for inhalation
anaesthesia using sevoflurane in rats, the expression of circadian genes may be
severely influenced, which needs to be borne in mind in the design of animal studies
analysing gene expression (Kobayashi et al. 2007).

As indicated in these few examples, the selection of appropriate anaesthetic and
analgesic procedures is a key factor in preclinical animal studies and has to be
carefully considered in the context of the specific research question and study
protocol (Gargiulo et al. 2012). Scientists need to know which particular anaesthetic
and analgesic drugs were used, including name, dose, application frequency and
route of administration. Importantly, concerning long-term pain management after
surgery, it is recommended to specify the duration of the analgesic treatment.
Moreover, when it is decided to withhold analgesics because of interference with
the research project, it is essential to include the reasons for this decision when
reporting the study so that this information is available to those who may subse-
quently wish to replicate and extend such studies (Stokes et al. 2009).

Hypothermia, hypotension, hypoxemia and respiratory depression are frequently
observed side effects during animal anaesthesia that can develop to serious health
problems culminating in unexpected death (Davis 2008). These risks need to be
incorporated when planning and performing experiments and highlight the impor-
tance of adequate animal monitoring procedures to eliminate the incidence of
complications during anaesthesia. Additionally, the reporting of such events and
their practical management (e.g. the use of warming pads) is crucial for scientists
trying to reproduce and evaluate research data.

Animal imaging studies have specific requirements concerning anaesthesia that
are related to the use of particular methodological techniques and the duration of the
experiments. The primary reason for general anaesthesia in imaging studies is the
need for the restraint and immobility of the animals in order to avoid movement
artefacts and to obtain signals with maximal reproducibility (Gargiulo et al. 2012).
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However, anaesthetic agents can unintentionally affect physiological parameters of
animals and confound the outcomes of different imaging modalities (Hildebrandt
et al. 2008). As shown for positron emission tomography (PET) neuroimaging
studies, the use of anaesthetics such as ketamine or isoflurane may alter
neuromolecular mechanisms in animal brains, thereby leading to an incorrect repre-
sentation of normal properties of the awake brain (Alstrup and Smith 2013).
Moreover, repeated anaesthesia procedures and the preparation of the animals for
the study may influence the processes under investigation. Physical restraint stress
before the experiment can increase the anaesthetic induction doses and negatively
influence the quality of some molecular imaging procedures such as PET due to
altered kinetics and biodistribution of radiotracers (Hildebrandt et al. 2008). The
latter effect has also been observed to be dependent on the choice of anaesthetics, the
duration of fasting periods as well as to result from hypothermia observed as an
adverse event from anaesthesia (Fueger et al. 2006).

As for surgical procedures, the careful selection of the most appropriate anaes-
thesia method addressing all the needs and goals of the specific research project and
imaging modality is important (Vesce et al. 2017). Since anaesthetics can influence
various physiological and pharmacological functions of the animals, monitoring of
anaesthetic levels and of vital functions during imaging studies has proven useful. In
order to achieve reproducible experimental conditions in imaging studies, a clear and
consistent reporting of methodological details concerning the animals, fasting
conditions, anaesthesia regimens and monitoring is absolutely essential.

5 Ex Vivo Biochemical and Histological Analysis

Numerous ex vivo methods, including biochemical and histological analyses, are
used routinely to complement in vivo studies to add additional information or to
address scientific questions which are difficult to address in an in vivo setting. The
starting point for such studies is a living organism, and as such, many of the
previously described considerations in, e.g. the ARRIVE guidelines are entirely
applicable and should be included when reporting data from such studies. In the
following section, we will highlight examples of studies where specific methodo-
logical details have been evinced to be important for outcome and as such should be
included in any reporting of data from studies where similar ex vivo analyses have
been carried out.

6 Histology

Histology is the microscopic study of animal and plant cells and tissues. It comprises
a multistage process of cell or tissue collection and processing, sectioning, staining
and examining under a microscope to finally quantification. Various methods are
routinely applied in numerous cell and tissue types. The field of histology has been
as affected as others by the lack of reproducibility of data across labs. In a recent
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report, Dukkipati et al. made the observation that conflicting data on the presence of
pathological changes in cholinergic synaptic inputs (C-boutons) exists in the field of
amyotrophic lateral sclerosis (ALS), thus making it difficult to assess roles of these
synaptic inputs in the pathophysiology of the disease (Dukkipati et al. 2017). The
authors sought to determine whether or not the reported changes described in the
scientific literature are indeed truly statistically and biologically significant and to
evaluate the possible reasons for why reproducibility has proven problematic. Thus,
histological analyses were conducted using several variations on experimental
design and data analysis and indeed, it was shown that factors including the grouping
unit, sampling strategy and lack of blinding could all be contributors to the failure in
replication of results. Furthermore, the lack of power analysis and effect size made
the assessment of biological significance difficult. Experimental design has also been
the focus of a report by Torlakovic et al. who have highlighted the importance of
inclusion of appropriate and standardised controls in immunohistochemistry studies
so that data can be reproduced from one test to another and indeed from one lab to
another (Torlakovic et al. 2015). Lai et al. point to the difficulty in standardising
complex methods in their report of the development of the OPTIClear method using
fresh and archived human brain tissue (Lai et al. 2018).

A comparison of different quantification methods has been described by Wang
et al. to determine hippocampal damage after cerebral ischemia (Wang et al. 2015).
The authors start with the comment that multiple techniques are used to evaluate
histological damage following ischemic insult although the sensitivity and repro-
ducibility of these techniques is poorly characterised. Nonetheless, their output has a
pivotal impact on results and conclusions drawn therefrom. In this study, two factors
emerged as being important methodological aspects. Firstly, since neuronal cell
death does not occur homogeneously within the CA1 region of the hippocampus,
it is critical that the time post ischemic insult is accurately reported. Secondly, in
terms of analysis regarding counting strategy, window size and position were both
shown to have a major impact on study results and should therefore be clearly
reported. Ward et al. make the point that in order to reproduce histopathological
results from, e.g. the mouse, the pathology protocol, including necropsy methods
and slide preparation, should be followed by interpretation of the slides by a
pathologist familiar with reading mouse slides and familiar with the consensus
medical nomenclature used in mouse pathology (Ward et al. 2017). Additionally,
for the peer review of manuscripts where histopathology is a key part of the
investigation, pathologists should be consulted.

The importance of such studies to the field is further acknowledged by the
existence of numerous initiatives to improve reproducibility. For in situ
hybridisation (ISH) and immunohistochemistry (IHC) biomarkers, the minimum
information specification for ISH and IHC experiments (MISFISHIE) guidelines
has been developed by the Stem Cell Genome Anatomy Projects consortium, and it
is anticipated that compliance should enable researchers at different laboratories to
fully evaluate data and reproduce experiments (Deutsch et al. 2008). The
MISFISHIE checklist includes six aspects of information to be provided in the
reporting of experiments ranging from experimental design, biomaterials and
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treatments, reporter (probe or antibody) information, staining protocols and
parameters, imaging data and parameters and imaging characterisations. The use
of statistics and any guidance on interpretation of results is, however, not included.
The authors stress that the implementation of MISFISHIE should not remove
variability in data but rather facilitate the identification of specific sources of
variability. A similarly intended study describes a checklist of 20 items that are
recommended to be included when reporting histopathology studies (Knijn et al.
2015). Thus, while reproducibility in histological analyses has been a problem and
has perhaps hindered scientific progress, the field has adapted and adherence to new
tools and guidelines that are now available offer hope that we are moving rapidly in a
positive direction.

7 Ex Vivo Biochemical Analysis

Biochemical assessments can be performed in numerous ex vivo biological materials
ranging from CSF to organoids and are routinely used to assess mRNA and proteins
such as hormones.

Flow cytometry of ventricular myocytes is an emerging technology in cardiac
research. Cellular variability and cytometer flow cell size are known to affect
cytometer performance, and these two factors of variance are considered to limit
assay validity and reproducibility across laboratories. In a study by Lopez et al., the
authors hypothesised that washing and filtering create a bias towards sampling
smaller cells than actually exist in the adult heart and they performed a study to
test this (Lopez et al. 2017). The study results revealed that there was indeed a
significant impact of washing and filtering on the experimental outcome and thus
proposed a no-wash step in the protocol that could become part of a standard
experimental design to minimise variability across labs.

Deckardt et al. have investigated the effect of a range of commonly used
anaesthetics on clinical pathology measures including glucose, serum proteins,
hormones and cholinesterase (Deckardt et al. 2007). The authors demonstrated
differential effects of the different anaesthetics with regard to some of the measured
parameters and differences across the sex and species used, thus demonstrating the
importance of understanding the impact that an anaesthetic can have – even on
ex vivo readouts – and to include appropriate controls. A similar study was
conducted by Lelovas et al. which further highlights the importance of concise and
accurate reporting of the use of anaesthetics in the collection of biological samples
for biochemical readouts since their use can have a significant impact on outcome
(Lelovas et al. 2017). Watters and Goodman published a comparison of basic
methods in clinical studies and in in vitro tissue and cell culture studies reported in
three anaesthesia journals (Watters and Goodman 1999). The authors identified
16 in vitro articles, and although they were not able to identify anything inherently
wrong with the studies, they noted the small sample sizes and the lack of reporting on
failures (only 2 of 53) and describe anecdotal evidence of experimenters only
reporting on the experiments that work. The authors conclude with a call for all
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investigators to give reasons for sample size, to use randomisation and blinding
wherever possible and to report exclusions and withdrawals, thus enabling an
improvement in robustness and general applicability of the data published.

Antibodies are commonly used tools in research, particularly in ex vivo analyses.
A common cause for the lack of reproducibility of data using antibodies could be due
to the lack of thorough validation (Drucker 2016). The importance of standardised
reagents has been highlighted by Venkataraman et al. who have described the
establishment of a toolbox of immunoprecipitation-grade monoclonal antibodies to
human transcription factors with the aim of improving quality and reproducibility
across labs (Venkataraman et al. 2018). This work was conducted as part of the NIH
protein capture reagents programme (PCRP) which has generated over 1,500
reagents that can be used by the scientific community.

8 Perspective

An improvement in quality in preclinical research and particularly where animals are
used is urgently needed. To achieve this, it is of fundamental importance to change
the way experimental results are reported in the scientific literature so that data can
be more easily reproduced across labs. This should enable more rapid scientific
progress and reduce waste. Scientists are encouraged to adopt the existing guidelines
by defining all relevant information that has to be included in publications and study
reports, with the aim of enhancing the transparency, reproducibility and reliability of
scientific work. Ensuring that preclinical research proceeds along structured
guidelines will strengthen the robustness, rigour and validity of scientific data and
ultimately the suitability of animal studies for translation into clinical trials.

We have described several important factors relating to behavioural experiments
that may influence the outcomes of some selected behavioural animal studies.
Obviously, this represents only a small part of the various possible variations of
the laboratory environment, equipment and methodological procedures that can
affect animal behaviour. However, we have indicated the importance of considering
and reporting all relevant details regarding behavioural experiments, which will help
to resolve the common problem of poor reproducibility of certain findings across
different laboratories and to ensure high quality of behaviour animal studies.

We have highlighted the use of anaesthesia and analgesia as factors that can have
a significant impact on experimental data, and it is therefore of utmost importance
that their use is reported comprehensively. High animal welfare standards require the
use of anaesthetics and analgesics when performing painful and stress-inducing
experiments. However, since these drugs may severely influence research outcomes,
it is necessary to carefully select the most suitable procedures for the scientific
question under investigation and to evaluate the importance of the scientific needs
in the context of animal wellbeing and existing guidelines for the description of
experimental animal research should be applied. The complete reporting of anaes-
thesia procedures as well as pain management could significantly improve the
quality and reproducibility of preclinical animal studies and enhance animal welfare.
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Ex vivo measures including histological analysis and biochemical readouts are
seemingly just as prone to poor reproducibility as in vivo experiments. Clearly, the
precise details of the in-life part of the study should not be overlooked in the
reporting of such studies since this aspect can have a significant impact on overall
experimental outcome and conclusions.

The field has reached a point where something needs to be done to improve
standards, and indeed, to this end, numerous initiatives are ongoing. One such
initiative is the Innovative Medicines Initiative consortium project “European Qual-
ity in Preclinical Research” (EQIPD). The EQIPD project aims to identify ways to
enable a smoother, faster and safer transition from preclinical to clinical testing by
establishing common guidelines to strengthen the robustness, rigour and validity of
research data. Numerous academic and industrial partners are involved in this
initiative, which should have a significant and positive impact in the next few
years. Nevertheless, the output of EQIPD and similar efforts need to be embraced
and for that, the entire scientific community has an important role to play.
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Abstract
This chapter demystifies P-values, hypothesis tests and significance tests and
introduces the concepts of local evidence and global error rates. The local evidence
is embodied in this data and concerns the hypotheses of interest for this experiment,
whereas the global error rate is a property of the statistical analysis and sampling
procedure. It is shown using simple examples that local evidence and global error
rates can be, and should be, considered together when making inferences. Power
analysis for experimental design for hypothesis testing is explained, along with the
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more locally focussed expected P-values. Issues relating to multiple testing,
HARKing and P-hacking are explained, and it is shown that, in many situations,
their effects on local evidence and global error rates are in conflict, a conflict that can
always be overcomeby a fresh dataset from replication of key experiments. Statistics
is complicated, and so is science. There is no singular right way to do either, and
universally acceptable compromises may not exist. Statistics offers a wide array of
tools for assisting with scientific inference by calibrating uncertainty, but statistical
inference is not a substitute for scientific inference. P-values are useful indices of
evidence and deserve their place in the statistical toolbox of basic pharmacologists.

Keywords
Evidence · Hypothesis test · Multiple testing · P-hacking · P-values · Scientific
inference · Significance filter · Significance test · Statistical inference

1 Introduction

There is a widespread consensus that we are in the midst of a ‘reproducibility crisis’
and that inappropriate application of statistical methods facilitates, or even causes,
irreproducibility (Ioannidis 2005; Nuzzo 2014; Colquhoun 2014; George et al. 2017;
Wagenmakers et al. 2018). P-values are a “pervasive problem” (Wagenmakers 2007)
because they are misunderstood, misapplied, and answer a question that no one asks
(Royall 1997; Halsey et al. 2015; Colquhoun 2014). They exaggerate evidence (John-
son 2013; Benjamin et al. 2018) or they are irreconcilable with evidence (Berger and
Sellke 1987). What’s worse, ‘P-hacking’ amplifies their intrinsic shortcomings (Fraser
et al. 2018). The inescapable conclusion, it would seem, is that P-values should be
eliminated by replacement with Bayes factors (Goodman 2001;Wagenmakers 2007) or
confidence intervals (Cumming 2008), or by simply doing without (Trafimow and
Marks 2015). However, much of the blame for irreproducibility that is apportioned to
P-values is based on pervasive and pernicious misunderstandings.

This chapter is an attempt to resolve those misunderstandings. Some might say it
is a reckless attempt because history suggests that it is doomed to failure, and
reckless also because it goes against much of the conventional wisdom regarding
P-values and will therefore be seen by some as promoting inappropriate statistical
practices. That’s OK though, because the conventional wisdom regarding P-values
is mistaken in important ways, and those mistakes fuel false suppositions regarding
what practices are appropriate.

1.1 On the Role of Statistics

Statistics is complicated1 but is usually presented simplistically in the statistics
textbooks and courses studied by pharmacologists. Readers of those books and

1Even its grammatical form is complicated: “statistics” looks like a plural noun, but it is both plural
when referring to values calculated from data and singular when referring to the discipline or
approaches to data analysis.
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graduates of those course should therefore be forgiven if they make the false
assumption that statistics is a set of rules to be applied in order to obtain a statistically
valid statistically significant. The instructions say that you match the data to the
recipe, turn the crank, and bingo: it’s significant, or not. If you do it right, then you
might be rewarded with a star! No matter how explicable that simplistic view of
statistics might be, it is far too limiting. It leads to thoughtless use of a limited set of
methods and to over-reliance on the familiar but misunderstood P-value. It prevents
the full utilisation of statistical thinking within scientific inference, and allows bad
statistics to license false inferences. We have to aim for more than the rote-learning
of recipes in statistics courses because while statistics is not simple, good science is
harder. I therefore take as a working assumption the notion that good scientists are
capable of dealing with the intricacies of statistical thinking.

I will admit upfront that it is not essential to have a statistical inference in order to
make a scientific inference. For example, there is little need for a formal statistical
analysis if results can be dealt with using the inter-ocular impact test.2 However,
scientific inferences can be made more securely with statistics because it offers a rich
set of tools for calibrating uncertainty. Statistical analysis is particularly helpful in the
penumbral ‘maybe zone’ where the uncertainty is relatively evenly balanced – the
zone where scientists are most likely to be swayed by biasses into over-interpretation
of random deviations within the noise. The extra insight from a well-implemented
statistical analysis can protect from the desire to find something notable, and thereby
reduce the number of false claims made.

Most people need all the help they can get to prevent them making fools of themselves
by claiming that their favourite theory is substantiated by observations that do nothing of
the sort.

– Colquhoun (1971, p. 1)

Improved utilisation of statistical approaches would indeed help to minimise the
number of times that pharmacologists make fools of themselves by reducing the
number of false positive results in pharmacological journals and, consequently,
reduce the number of faulty leads that fail to translate into a therapeutic (Begley
and Ellis 2012). However, even ideal application of the most appropriate statistical
methods would not improve the replicability of published results quite as much as
might be assumed because not every result that fails to be replicated is a false
positive and not every mistaken conclusion would be prevented by better statistical
inferences.

Basic pharmacological studies are typically performed using biological models
such as cell lines, tissue samples, or laboratory animals and so even if the original
results are not false positives a replication might fail when it is conducted using
different models (Drucker 2016). Replications might also fail when the original
results are critically dependent on unrecognised methodological details, or on

2In other words, results that hit you right between the eyes. In the Australian vernacular the inter-
ocular impact test is the bloody obvious test.
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reagents such as antibodies that have properties that can vary over time or between
sources (Berglund et al. 2008; Baker and Dolgin 2017; Voelkl et al. 2018). It is those
types of irreproducibility rather than false positives that are responsible for many
failures of published leads to translate into clinical targets or therapeutics (see also
chapter “Building Robustness intro Translational Research”). The distinction being
made here is between false positive inferences which lack ‘internal validity’ and
failures of generalisability which lack ‘external validity’ even though correct in
themselves. It is an important distinction because the former can be reduced by
more appropriate use of statistical methods but the latter cannot.

The inherent objectivity of statistics can minimise the number of times that we
make fools of ourselves, but just doing statistics is not enough, because it is not a set
of rules for scientists to follow to make automated scientific inferences. To get from
calibrated statistical inferences to reliable inferences about the real world, the
statistical analyses have to be interpreted; thoughtfully and in the full knowledge
of the properties of the tool and the nature of the real world system being probed.
Some researchers might be disconcerted by the fact that statistics cannot provide
such certainty, because they just want to be told whether their latest result is “real”.
No matter how attractive it might be to fob off onto statistics the responsibility for
inferences, the answers that scientists seek cannot be answered by statistics alone.

2 All About P-values

P-values are not everything, and they are certainly not nothing. There are many,
many useful procedures and tools in statistics that do not involve or provide P-
values, but P-values are by far the most widely used inferential statistic in basic
pharmacological research papers.

P-values are a practical success but a critical failure. Scientists the world over use them, but
scarcely a statistician can be found to defend them.

– Senn (2001, p. 193)

Not only are P-values rarely defended, they are frequently derided (e.g. Berger
and Sellke 1987; Lecoutre et al. 2001; Goodman 2001; Wagenmakers 2007). Even
so, support for the continued use of P-values for at least some purposes with some
caveats can be found (e.g. Nickerson 2000; Senn 2001; García-Pérez 2016; Krueger
and Heck 2017). One crucial caveat is that a clear distinction has to be drawn
between the dichotomisation of P-values into ‘significant’ or ‘not significant’ (typi-
cally on the basis of a threshold set at 0.05) and the evidential meaning of the actual
numerically specified P-value. The former comes from a hypothesis test and the
latter from a significance test. Contrary to what many readers will think and have
been taught, they are not the same things. It might be argued that the battle to retain a
clear distinction between significance tests and hypothesis tests has long been lost,
but I have to continue that battle here because that distinction is critical for under-
standing the uses and misuses of P-values. Detailed accounts can also be found
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elsewhere (Huberty 1993; Senn 2001; Hubbard et al. 2003; Lenhard 2006; Hurlbert
and Lombardi 2009; Lew 2012).

2.1 Hypothesis Test and Significance Test

When comparing significance tests and hypothesis tests it is conventional to note that
the former are ‘Fisherian’ (or, perhaps, “neoFisherian” (Hurlbert and Lombardi
2009)) and the latter are ‘Neyman–Pearsonian’. R.A. Fisher did not invent signifi-
cance tests per se – Gossett published what became Student’s t-test before Fisher’s
career had begun (Student 1908) and even that is not the first example – but Fisher
did effectively popularise their use with his book Statistical Methods for Research
Workers (1925), and he is credited with (or blamed for!) the convention of P< 0.05
as a criterion for ‘significance’. It is important to note that Fisher’s ‘significant’
denoted something along the lines of worthy of further consideration or investiga-
tion, which is different from what is denoted by the same word applied to the results
of a hypothesis test. Hypothesis tests came later, with the 1933 paper by Neyman and
Pearson that set out the workings of dichotomising hypothesis tests and also
introduced of the ideas “errors of the first kind” (false positive errors; type I errors)
and “errors of the second kind” (false negative errors; type II errors) and a
formalisation of the concept of statistical power.

A Neyman–Pearsonian hypothesis test is more than a simple statistical calcula-
tion. It is a method that properly encompasses experimental planning and experi-
menter behaviour as well. Before an experiment is conducted, the experimenter
chooses α, the size of the critical region in the distribution of the test statistic, on the
basis of the acceptable false positive (i.e. type I) error rate and sets the sample size on
the basis of an acceptable false negative (i.e. type II) error rate. In effect the sample
size, power,3 and α are traded off against each other to obtain an experimental design
with the appropriate mix of cost and error rates. In order for the error rates of the
procedure to be well calibrated, the sample size and α have to be set in advance of the
experiment being performed, a detail that is often overlooked by pharmacologists.
After the experiment has been run and the data are in hand, the mechanics of the test
involves a determination of whether the observed value of the test statistic lies within
a predetermined critical region under the sampling distribution provided by a
statistical model and the null hypothesis. When the observed value of the test statistic
falls within the critical range, the result is ‘significant’ and the analyst discards the
null hypothesis. When the observed test statistic falls outside the critical range, the
result is ‘not significant’ and the null hypothesis is not discarded.

In current practice, dichotomisation of results into significant and not significant
is most often made on the basis of the observed P-value being less than or greater

3The ‘power’ of the experiment is one minus the false positive error rate, but it is a function of the
true effect size, as explained later.
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than a conventional threshold of 0.05, so we have the familiar P< 0.05 for α¼ 0.05.
The one-to-one relationship between the test statistic being within the critical range
and the P-value being less than α means that such practice is not intrinsically
problematical, but using a P-value as an intermediate in a hypothesis test obscures
the nature of the test and contributes to the conflation of significance tests and
hypothesis tests.

The classical Neyman–Pearsonian hypothesis test is an acceptance procedure, or
a decision theory procedure (Birnbaum 1977; Hurlbert and Lombardi 2009) that
does not require, or provide, a P-value. Its output is a binary decision: either reject
the null hypothesis or fail to reject the null hypothesis. In contrast, a Fisherian
significance test yields a P-value that encodes the evidence in the data against the
null hypothesis, but not, directly, a decision. The P-value is the probability of
observing data as extreme as that observed, or more extreme, when the null hypoth-
esis is true. That probability is generated or determined by a statistical model of some
sort, and so we should really include the phrase ‘according to the statistical model’
into the definition. In the Fisherian tradition4 a P-value is interpreted evidentially: the
smaller the P-value, the stronger the evidence against the null hypothesis and the
more implausible the null hypothesis is, according to the statistical model. No
behavioural or inferential consequences attach to the observed P-value and no
threshold need to be applied because the P-value is a continuous index.

In practice, the probabilistic nature of P-values has proved difficult to use because
people tend to mistakenly assume that the P-value measures the probability of the
null hypothesis or the probability of an erroneous decision – it seems that they prefer
any probability that is more noteworthy or less of a mouthful than the probability
according to a statistical model of observing data as extreme or more extreme when
the null hypothesis is true. Happily, there are no ordinary uses of P-values that
require them to be interpreted as probabilities. My advice is to forget that P-values
can be defined as probabilities and instead look at them as indices of surprisingness
or unusualness of data: the smaller the P-value, the more surprising are the data
compared to what the statistical model predicts when the null hypothesis is true.

4It has been argued that because Fisher regularly described experimental results as ‘significant’ or
‘not significant’ he was treating P-values dichotomously and that he used a fixed threshold for that
dichotomisation (e.g. Lehmann 2011, pp. 51–53). However, Fisher meant the word ‘significant’ to
denote only a result that is worthy of attention and follow-up, and he quoted P-values as being less
than 0.05, 0.02, and 0.01 because he was working from tables of critical values of test statistics
rather than laboriously calculating exact P-values manually. He wrote about the issue on several
occasions, for example:

Convenient as it is to note that a hypothesis is contradicted at some familiar level of
significance such as 5% or 2% or 1% we do not, in Inductive Inference, ever need to lose
sight of the exact strength which the evidence has in fact reached, or to ignore the fact that
with further trial it might come to be stronger, or weaker.

– Fisher (1960, p. 25)
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Conflation of significance tests and hypothesis tests may be encouraged by their
apparently equivalent outputs (significance and P-values), but the conflation is too
often encouraged by textbook authors, even to the extent of presenting a hybrid
approach containing features of both. The problem has deep roots: when Neyman
and Pearson published their hypothesis test in 1933 it was immediately assumed that
their test was an extension of Fisher’s significance tests. Substantive differences in
the philosophical and theoretical underpinnings soon became apparent to the
protagonists and a long-lasting and bitter personal enmity developed between Fisher
and Neyman (Lenhard 2006; Lehmann 2011). That feud seems likely to be one of
the causes of the confusion that we have today as it has been suggested that authors
of statistics textbooks avoided taking sides in the feud – an understandable response
given vehemence and the forceful personalities of the protagonists – either by
presenting only one of the approaches without mention of the other or by presenting
a mixture of both (Cowles 1989; Huberty 1993; Halpin and Stam 2006).

Whatever the origin of the confusion, the fact that significance tests and hypothe-
sis tests are rarely explained as distinct alternatives in textbooks encourages many to
mistakenly assume that ‘significance test’ and ‘hypothesis test’ are synonyms. It also
encourages to use a hybrid of the two which is commonly called NHST (null
hypothesis significance test). NHST has been derided, for example, as an “inconsis-
tent mishmash” (Gigerenzer 1998) and as a “jerry-built framework” (Krueger and
Heck 2017, p. 1) but versions of NHST are nonetheless more common than well-
constructed hypothesis tests and significance tests together. Users of NHST almost
universally assume that they are ‘doing it right’ and the assumption that P-value
equals NHST persists, largely unnoticed, particularly in the commentaries of those
clamouring for the elimination of P-values. I therefore feel compelled to add to the
list of derogatory epithets: NHST is like a reverso-platypus. The platypus was at one
time derided as a fake5 – a composite creature consisting of parts of several animals –
but is a real animal, rare but beautiful, and perfectly adapted to its ecological niche.
The common NHST is assumed by its many users to be a proper statistical procedure
but is, in fact, an ugly composite, maladapted for almost all analytic purposes.

2.2 Contradictory Instructions

No one should be using NHST, but should we use hypothesis testing or significance
testing? The answer should depend on what your analytical objectives are, but in
practice it more often depends on who you ask. Not all advice is good advice, and not
even the experts agree. Responses to the American Statistical Association’s official

5Well, that’s the conventional wisdom, but it may be an exaggeration. The first scientific description
of the “duck-billed platypus” was done in England by Shaw and Nodder (1789), who wrote “Of all
Mammalia yet known it seems the most extraordinary in its conformation; exhibiting the perfect
resemblance of the beak of a Duck engrafted on the head of a quadruped. So accurate is the
similitude that, at first view, it naturally excites the idea of some deceptive preparation by artificial
means”. If Shaw and Nodder really thought it a fake, they did not do so for long.
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statement on P-values provide a case in point. In response to the widespread
expressions of concern over the misuse and misunderstanding of P-values, the
ASA convened a group of experts to consider the issues and to collaborate on
drafting an official statement on P-values (Wasserstein and Lazar 2016). Invited
commentaries were published alongside the final statement, and even a brief reading
of those commentaries on the statement will turn up misgivings and disagreements.
Given that most of the commentaries were written by participants in the expert
group, such disquiet and dissent confirms the difficulty of this topic. It should also
signal to readers that their practical familiarity with P-values does not ensure that
they understand P-values.

The official ASA statement on P-values sets out six numbered principles
concerning P-values and scientific inference:

1. P-values can indicate how incompatible the data are with a specified statistical
model.

2. P-values do not measure the probability that the studied hypothesis is true, or the
chance that the data were produced by random chance.

3. Scientific conclusions and business or policy decisions should not be based only
on whether a P-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.
5. A P-value, or statistical significance, does not measure the size of an effect or the

importance of a result.
6. By itself, a P-value does not provide a good measure of evidence regarding a

model or hypothesis.

Those principles are all sound – some derive directly from the definition of P-
values and some are self-evidently good advice about the formation and reporting of
scientific conclusions – but hypothesis tests and significance tests are not even
mentioned in the statement and so it does not directly answer the question about
whether we should use significance tests or hypothesis tests that I asked at the start of
this section. Nevertheless, the statement offers a useful perspective and is not
entirely neutral on the question. It urges against the use of a threshold in Principle
3 which says “Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold”. Without a threshold we
cannot use a hypothesis test. Lest any reader think that the intention is that P-values
should not be used, I point out that the explanatory note for that principle in the ASA
document begins thus:

Practices that reduce data analysis or scientific inference to mechanical “bright-line” rules
(such as “p< 0.05”) for justifying scientific claims or conclusions can lead to erroneous
beliefs and poor decision making.

– Wasserstein and Lazar (2016, p. 131)

“Bright-line rule” is an American legal phrase denoting an approach to
simplifying ambiguous or complex legal issues by establishment of a clear,
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consistent ruling on the basis of objective factors. In other words, subtleties of
circumstance and subjective factors are ignored in favour of consistency and sim-
plicity. Such a rule might be useful in the legal setting, but it does not sound like an
approach well-suited to the considerations that should underlie scientific inference. It
is unfortunate, therefore, that a mechanical bright-line rule is so often used in basic
pharmacological research, and even worse that it is demanded by the instructions to
authors of the British Journal of Pharmacology:

When comparing groups, a level of probability (P) deemed to constitute the threshold for
statistical significance should be defined in Methods, and not varied later in Results
(by presentation of multiple levels of significance). Thus, ordinarily P< 0.05 should be
used throughout a paper to denote statistically significant differences between groups. –
Curtis et al. (2015)

An updated version of the guidelines retains those instructions (Curtis et al. 2018),
but because it is a bad instruction I present three objections. The first is that routine use
of an arbitrary P-value threshold for declaring a result significantly ignores almost all
of the evidential content of the P-value by forcing an all-or-none distinction between
a P-value small enough and one not small enough. The arbitrariness of a threshold for
significance is well known and flows from the fact that there is no natural cutoff point
or inflection point in the scale of P-values. Anyone who is unconvinced that it matters
should note that the evidence in a result of P¼ 0.06 is not so different from that in a
result of P¼ 0.04 as to support an opposite conclusion (Fig. 1).

The second objection to the instruction to use a threshold of P< 0.05 is that
exclusive focus on whether the result is above or below the threshold blinds analysts
to information beyond the sample in question. If the statistical procedure says
discard the null hypothesis (or don’t discard it), then that statistical decision seems
to override and make redundant any further considerations of evidence, theory or
scientific merit. That is quite dangerous, because all relevant material should be
considered and integrated into scientific inferences.

The third objection refers to the strength of evidence needed to reach the
threshold: the British Journal of Pharmacology instruction licenses claims on the
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Fig. 1 P ¼ 0.04 is not very different from P ¼ 0.06. Pseudo-data devised to yield one-tailed
P¼ 0.06 (left) and P¼ 0.04 (right) from a Student’s t-test for independent samples, n¼ 5 per group.
The y-axis is an arbitrarily scaled measure
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basis of relatively weak evidence.6 The evidential disfavouring of the null hypothe-
sis in a P-value close to 0.05 is surprisingly weak when viewed as a likelihood ratio
or Bayes factor (Goodman and Royall 1988; Johnson 2013; Benjamin et al. 2018), a
weakness that can be confirmed by simply ‘eyeballing’ (Fig. 1).

A fixed threshold corresponding to weak evidence might sometimes be reason-
able, but often it is not. As Carl Sagan said: “Extraordinary claims require extraordi-
nary evidence”.7 It would be possible to overcome this last objection by setting a
lower threshold whenever an extraordinary claim is to be made, but the British
Journal of Pharmacology instructions preclude such a choice by insisting that the
same threshold be applied to all tests within the whole study.

There has been a serious proposal that a lower default threshold of P< 0.005 be
adopted as the default (Johnson 2013; Benjamin et al. 2018), but even if that would
ameliorate the weakness of evidence objection, it doesn’t address all of the problems
posed by dichotomising results into significant and not significant, as is acknowl-
edged by the many authors of that proposal.

Should the British Journal of Pharmacology enforce its guideline on the use of
Neyman–Pearsonian hypothesis testing with a fixed threshold for statistical
significance? Definitely not. Laboratory pharmacologists should usually avoid
them because those tests are ill-suited to the reality of basic pharmacological
studies.

The shortcoming of hypothesis testing is that it offers an all-or-none outcome and
it engenders a one-and-done response to an experiment. All-or-none in that the
significant or not significant outcome is dichotomous. One-and-done because once
a decision has been made to reject the null hypothesis there is little apparent reason to
re-test that null hypothesis the same way, or differently. There is no mechanism
within the classical Neyman–Pearsonian hypothesis testing framework for a result to
be treated as provisional. That is not particularly problematical in the context of a
classical randomised clinical trial (RCT) because an RCT is usually conducted only
after preclinical studies have addressed the relevant biological questions. That allows
the scientific aims of the study to be simple – they are designed to provide a
definitive answer to the primary question. An all-or-none one-and-done hypothesis
test is therefore appropriate for an RCT.8 But the majority of basic pharmacological
laboratory studies do not have much in common with an RCT because they consist
of a series of interlinked and inter-related experiments contributing variously to the
primary inference. For example, a basic pharmacological study will often include
experiments that validate experimental methods and reagents, concentration-

6Accepting P¼ 0.05 as a sufficient reason to suppose that a treatment is effective is akin to
accepting 50% as a passing grade: it is traditional in many settings, but it is far from reassuring.
7That phrase comes from the television series Cosmos, 1980, but may derive from Laplace (1812),
who wrote “The weight of evidence for an extraordinary claim must be proportioned to its
strangeness”. [translated, the original is in French].
8Clinical trials are sometimes aggregated in meta-analyses, but the substrate for meta-analytical
combination is the observed effect sizes and sample sizes of the individual trials, not the
dichotomised significant or not significant outcomes.
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response curves for one or more of drugs, positive and negative controls, and other
experiments subsidiary to the main purpose of the study. The design of the ‘headline’
experiment (assuming there is one) and interpretation of its results is dependent on
the results of those subsidiary experiments, and even when there is a singular
scientific hypothesis, it might be tested in several ways using observations within
the study. It is the aggregate of all of the experiments that inform the scientific
inferences. The all-or-none one-and-done outcome of a hypothesis test is less
appropriate to basic research than it is to a clinical trial.

Pharmacological laboratory experiments also differ from RCTs in other ways that
are relevant to the choice of statistical methodologies. Compared to an RCT, basic
pharmacological research is very cheap, the experiments can be completed very
quickly, with the results available for analysis almost immediately. Those
advantages mean that a pharmacologist might design some of the experiments within
a study in response to results obtained in that same study,9 and so a basic pharmaco-
logical study will often contain preliminary or exploratory research. Basic research
and clinical trials also differ in the consequences of erroneous inference. A false
positive in an RCT might prove very damaging by encouraging the adoption of an
ineffective therapy, but in the much more preliminary world of basic pharmacologi-
cal research a false positive result might have relatively little influence on the wider
world. It could be argued that statistical protections against false positive outcomes
that are appropriate in the realm of clinical trials can be inappropriate in the realm of
basic research. This idea is illustrated in a later section of this chapter.

The multi-faceted nature of the basic pharmacological study means that statistical
approaches yielding dichotomous yes or no outcomes are less relevant than they are
to the archetypical RCT. The scientific conclusions drawn from basic pharmacologi-
cal experiments should be based on thoughtful consideration of the entire suite of
results in conjunction with any other relevant information, including both
pre-existing evidence and theory. The dichotomous all-or-none, one-and-done
hypothesis test is poorly adapted to the needs of basic pharmacological experiments,
and is probably poorly adapted to the needs of most basic scientific studies. Scientific
studies depend on a detailed evaluation of evidence but a hypothesis test does not
fully support such an evaluation.

2.3 Evidence Is Local; Error Rates Are Global

A way to understand difference between the Fisherian significance test and the
Neyman–Pearsonian hypothesis test is to recognise that the former supports ‘local’
inference, whereas the latter is designed to protect against ‘global’ long-run error.
The P-value of a significance test is local because it is an index of the evidence in this
data against this null hypothesis. In contrast, the hypothesis test decision regarding

9Yes, that is also done in ‘adaptive’ clinical trials, but they are not the archetypical RCT that is the
comparator here.
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rejection of the null hypothesis is global because it is based on a parameter, α, which
is set without reference to the observed data. The long run performance of the
hypothesis test is a property of the procedure itself and is independent of any
particular data, and so it is global. Local evidence; global errors. This is not an
ahistoric imputation, because Neyman and Pearson were clear about their preference
for global error protection rather than local evidence and their objectives in devising
hypothesis tests:

We are inclined to think that as far as a particular hypothesis is concerned, no test based upon
the theory of probability can by itself provide any valuable evidence of the truth or falsehood
of that hypothesis.

But we may look at the purpose of tests from another view-point. Without hoping to
know whether each separate hypothesis is true or false, we may search for rules to govern our
behaviour with regard to them, in following which we insure that, in the long run of
experience, we shall not be too often wrong.

– Neyman and Pearson (1933)

The distinction between local and global properties or information is relatively
little known, but Liu and Meng (2016) offer a much more technical and complete
discussion of the local/global distinction, using the descriptors ‘individualised’ and
‘relevant’ for the local and the ‘robust’ for the global. They demonstrate a trade-off
between relevance and robustness that requires judgement on the part of the analyst.
In short, the desirability of methods that have good long-run error properties is
undeniable, but paying attention exclusively to the global blinds us to the local
information that is relevant to inferences. The instructions of the British Journal of
Pharmacology are inappropriate because they attend entirely to the global and
because the dichotomising of each experimental result into significant and not
significant hinders thoughtful inference.

Many of the battles and controversies regarding statistical tests swirl around
issues that might be clarified using the local versus global distinction, and so it
will be referred to repeatedly in what follows.

2.4 On the Scaling of P-values

In order to be able to safely interpret the local, evidential, meaning of a P-value, a
pharmacologist should understand its scaling. Just like the EC50s with which
pharmacologists are so familiar, P-values have a bounded scale, and just as is the
case with EC50s it makes sense to scale P-values geometrically (or logarithmically).
The non-linear relationship between P-values and an intuitive scaling of evidence
against the null hypothesis can be gleaned from Fig. 2. Of course, a geometric
scaling of the evidential meaning of P-values implies that the descriptors of evidence
should be similarly scaled and so such a scale is proposed in Fig. 3, with P-values
around 0.05 being called ‘trivial’ in recognition of the relatively unimpressive
evidence for a real difference between condition A and control in Fig. 2.
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Attentive readers will have noticed that the P-values in Figs. 1, 2 and 3 are all
one-tailed. The number of tails that published P-values have is inconsistent, is often
unspecified, and the number of tails that a P-value should have is controversial
(e.g. see Dubey 1991; Bland and Bland 1994; Kobayashi 1997; Freedman 2008;
Lombardi and Hurlbert 2009; Ruxton and Neuhaeuser 2010). Arguments about P-
value tails are regularly confounded by differences between local and global
considerations. The most compelling reasons to favour two tails relate to global
error rates, which means that they apply only to P-values that are dichotomised into
significant and not significant in a hypothesis test. Those arguments can safely be
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Fig. 2 What simple evidence looks like. Pseudo-data devised to yield one-tailed P-values from
0.05 to 0.0001 from a Student’s t-test for independent samples, n¼ 5 per group. The left-most group
of values is the control against which each of the other sets is compared, and the pseudo-datasets A,
B, C, and D were generated by arithmetic adjustment of a single dataset to obtain the indicated P-
values. The y-axis is an arbitrarily scaled measure
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Fig. 3 Evidential descriptors for P-values. Strength of evidence against the null hypothesis scales
semi-geometrically with the smallness of the P-value. Note that the descriptors for strength of
evidence are illustrative only, and it would be a mistake to assume, for example, that a P-value of
0.001 indicates moderately strong evidence against the null hypothesis in every circumstance
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ignored when P-values are used as indices of evidence and I therefore recommend
one-tailed P-values for general use in pharmacological experiments – as long as the
P-values are interpreted as evidence and not as a surrogate for decision. (Either way,
the number of tails should always be specified.)

2.5 Power and Expected P-values

The Neyman–Pearsonian hypothesis test is a decision procedure that, with a few
assumptions, can be an optimal procedure. Optimal only in the restricted sense that
the smallest sample gives the highest power to reject the null hypothesis when it is
false, for any specified rate of false positive errors. To achieve that optimality the
experimental sample size and α are selected prior to the experiment using a power
analysis and with consideration of the costs of the two specified types of error and
the benefits of potentially correct decisions. In other words, there is a loss function
built into the design of experiments. However, outside of the clinical trials arena, few
pharmacologists seem to design experiments in that way. For example, a study of
22 basic biomedical research papers published in Nature Medicine found that none
of them included any mention of a power analysis for setting the sample size (Strasak
et al. 2007), and a simple survey of the research papers in the most recent issue of
British Journal of Pharmacology (2018, issue 17 of volume 175) gives a similar
picture with power analyses specified in only one out of the 11 research papers that
used P< 0.05 as a criterion for statistical significance. It is notable that all of those
BJP papers included statements in their methods sections claiming compliance with
the guidelines for experimental design and analysis, guidelines that include this as
the first key point:

Experimental design should be subjected to ‘a priori power analysis’ so as to ensure that the
size of treatment and control groups is adequate[. . .]

– Curtis et al. (2015)

The most recent issue of Journal of Pharmacology and Experimental Therapeu-
tics (2018, issue 3 of volume 366) similarly contains no mention of power of sample
size determination in any of its 9 research papers, although none of its authors had to
pay lip service to guidelines requiring it.

In reality, power analyses are not always necessary or helpful. They have no clear
role in the design of a preliminary or exploratory experiment that is concerned more
with hypothesis generation than hypothesis testing, and a large fraction of the
experiments published in basic pharmacological journals are exploratory or prelimi-
nary in nature. Nonetheless, they are described here in detail because experience
suggests they are mysterious to many pharmacologists and they are very useful for
planning confirmatory experiments.

For a simple test like Student’s t-test a pre-experiment power analysis for
determination of sample size is easily performed. The power of a Student’s t-test
is dependent on: (1) the predetermined acceptable false positive error rate, α (bigger
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α gives more power); (2) the true effect size, which we will denote as δ (more power
when δ is larger); (3) the population standard deviation, σ (smaller σ gives more
power); and (4) the sample size (larger n for more power). The common approach to
a power test is to specify an effect size of interest and the minimum desired power, so
say we wish to detect a true effect of δ¼ 3 in a system where we expect the standard
deviation to be σ¼ 2. The free software10 called R has the function power.t.test() that
gives this result:

> power.t.test(delta=3, sd=2, power=0.8, sig.level = 0.05,

alternative ='one.sided', n=NULL)

Two-sample t test power calculation

n = 6.298691

delta = 3

sd = 2

sig.level = 0.05

power = 0.8

alternative = one.sided

NOTE: n is number in �each� group

It is conventional to round the sample size up to the next integer so the sample size
would be 7 per group.

While a single point power analysis like that is straightforward, it provides
relatively little information compared to the information supplied by the analyst,
and its output is specific to the particular effect size specified, an effect size that more
often than not has to be ‘guesstimated’ instead of estimated because it is the
unknown that is the object of study. A plot of power versus effect size is far more
informative than the point value supplied by the conventional power test (Fig. 4).
Those graphical power functions show clearly the three-way relationship between
sample size, effect size and the risk of a false negative outcome (i.e. one minus the
power).

Some experimenters are tempted to perform a post-experiment power analysis
when their observed P-value is unsatisfyingly large. They aim to answer the question
of how large the sample should have been, and proceed to plug in the observed effect
size and standard deviation and pulling out a larger sample size – always larger – that
might have given them the desired small P-value. Their interpretation is then that the
result would have been significant but for the fact that the experiment was under-
powered. That interpretation ignores the fact that the observed effect size might be an
exaggeration, or the observed standard deviation might be an underestimation and

10www.r-project.org.
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the null hypothesis might be true! Such a procedure is generally inappropriate and
dangerous (Hoenig and Heisey 2001). There is a one-to-one correspondence of
observed P-value and post-experiment power and no matter what the sample size,
a larger than desired P-value always corresponds to a low power at the observed
effect size, whether the null hypothesis is true or false. Power analyses are useful in
the design of experiments, not for the interpretation of experimental results.

Power analyses are tied closely to dichotomising Neyman–Pearsonian hypothesis
tests, even when expanded to provide full power functions as in Fig. 4. However,
there is an alternative more closely tied to Fisherian significance testing – an
approach better aligned to the objectives of evidence gathering. That alternative is
a plot of average expected P-values as functions of effect size and sample size
(Sackrowitz and Samuel-Cahn 1999; Bhattacharya and Habtzghi 2002). The median
is more relevant than the mean, both because the distribution of expected P-values is
very skewed and because the median value offers a convenient interpretation of there
being a 50:50 bet that and observed P-value will be either side of it. An equivalent
plot showing the 90th percentile of expected P-values gives another option for
experiment sample size planning purposes (Fig. 5).

Should the British Journal of Pharmacology enforce its power guideline? In
general no, but pharmacologists should use power curves or expected P-value curves
for designing some of their experiments, and ought to say so when they do. Power
analyses for sample size are very important for experiments that are intended to be
definitive and decisive, and that’s why sample size considerations are dealt with in
detail when planning clinical trials. Even though the majority of experiments in basic
pharmacological research papers are not like that, as discussed above, even prelimi-
nary experiments should be planned to a degree, and power curves and expected P-
value curves are both useful in that role.
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samples expressed as a function of standardised true effect size δ ∕σ for sample sizes (per group)
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3 Practical Problems with P-values

The sections above deal with the most basic misconceptions regarding the nature of
P-values, but critics of P-values usually focus on other important issues. In this
section I will deal with the significance filter, multiple comparisons and some forms
of P-hacking, and I need to point out immediately that most of the issues are not
specific to P-values even if some of them are enabled by the unfortunate
dichotomisation of P-values into significant and not significant. In other words,
the practical problems with P-values are largely the practical problems associated
with the misuse of P-values and with sloppy statistical inference generally.

3.1 The Significance Filter Exaggeration Machine

It is natural to assume that the effect size observed in an experiment is a good
estimate of the true effect size, and in general that can be true. However, there are
common circumstances where the observed effect size consistently overestimates the
true, sometimes wildly so. The overestimation depends on the facts that experimen-
tal results exaggerating the true effect are more likely to be found statistically
significant, and that we pay more attention to the significant results and are more
likely to report them. The key to the effect is selective attention to a subset of results
– the significant results – and so the process is appropriately called the significance
filter.
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If there is nothing untoward in the sampling mechanism,11 sample means are
unbiassed estimators of population means and sample-based standard deviations are
nearly unbiassed estimators of population standard deviations.12 Because of that we
can assume that, on average, a sample mean provides a sensible ‘guesstimate’ for the
population parameter and, to a lesser degree, so does the observed standard devia-
tion. That is indeed the case for averages over all samples, but it cannot be relied
upon for any particular sample. If attention has been drawn to a sample on the basis
that it is ‘statistically significant’, then that sample is likely to offer an exaggerated
picture of the true effect. The phenomenon is usually called the significance filter.
The way it works is fairly easily described but, as usual, there are some complexities
in its interpretation.

Say we are in the position to run an experiment 100 times with random samples of
n¼ 5 from a single normally distributed population with mean μ¼ 1 and standard
deviation σ¼ 1. We would expect that, on average, the sample means, x would be
scattered symmetrically around the true value of 1, and the sample-based standard
deviations, s, would be scattered around the true value of 1, albeit slightly asymmet-
rically. A set of 100 simulations matching that scenario show exactly that result (see
the left panel of Fig. 6), with the median of x being 0.97 and the median of s being
0.94, both of which are close to the expected values of exactly 1 and about 0.92,
respectively. If we were to pay attention only to the results where the observed P-
value was less than 0.05 (with the null hypothesis being that the population mean is
0), then we get a different picture because the values are very biassed (see the right
panel of Fig. 6). Among the ‘significant’ results the median sample mean is 1.2 and
the median standard deviation is 0.78.

The systematic bias of mean and standard deviation among ‘significant’ results in
those simulations might not seem too bad, but it is conventional to scale the effect
size as the standardised ratio x ∕ s,13 and the median of that ratio among the ‘signifi-
cant’ results is fully 50% larger than the correct value. What’s more, the biasses get
worse with smaller samples, with smaller true effect sizes, and with lower P-value
thresholds for ‘significance’.

It is notable that even the results with the most extreme exaggeration of effect size
in Fig. 6 – 550% – would not be counted as an error within the Neyman–Pearsonian
hypothesis testing framework! It would not lead to the false rejection of a true null or
to an inappropriate failure to reject a false null and so it is neither a type I nor a type II

11That is not a safe assumption, in particular because a haphazard sample is not a random sample.
When was the last time that you used something like a random number generator for allocation of
treatments?
12The variance is unbiassed but the non-linear square root transformation into the standard devia-
tion damages that unbiassed-ness. Standard deviations calculated from small samples are biassed
toward underestimation of the true standard deviation. For example, if the true standard deviation is
1, the expected average observed standard deviation for samples of n¼ 5 is 0.94.
13That ratio is often called Cohen’s d. Pharmacologists should pay no attention to Cohen’s
specifications of small, medium and large effect sizes (Cohen 1992) because they are much smaller
than the effects commonly seen in basic pharmacological experiments.
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error. But it is some type of error, a substantial error in estimation of the magnitude
of the effect. The term type M error has been devised for exactly that kind of error
(Gelman and Carlin 2014). A type M error might be underestimation as well as
overestimation, but overestimation is more common in theory (Lu et al. 2018) and in
practice (Camerer et al. 2018).

The effect size exaggeration coming from the significance filter is not a result of
sampling, or of significance testing, or of P-values. It is a result of paying extra
attention to a subset of all results – the ‘significant’ subset.

The significance filter presents a peculiar difficulty. It leads to exaggeration on
average, but any particular result may well be close to the correct size whether it is
‘significant’ or not. A real-world sample mean of, say, x ¼ 1:5 might be an
exaggeration of μ¼ 1, it might be an underestimation of μ¼ 2, or it might be pretty
close to μ¼ 1.4 and there would be no way to be certain without knowing μ, and if μ
were known then the experiment would probably not have been necessary in the first
place. That means that the possibility of a type M error looms over any experimental
result that is interesting because of a small P-value, and that is particularly true when
the sample size is small. The only way to gain more confidence that a particular
significant result closely approximates the true state of the world is to repeat the
experiment – the second result would not have been run through the significance
filter and so its results would not have a greater than average risk of exaggeration and
the overall inference can be informed by both results. Of course, experiments
intended to repeat or replicate an interesting finding should take the possible
exaggeration into account by being designed to have higher power than the original.
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Fig. 6 The significance filter. The dots in the graphs are means and standard deviations of samples
of n¼ 5 drawn from a normally distributed population with mean μ¼ 1 and standard deviation
σ¼ 1. The left panel shows all 100 samples and the right panel shows only the results where
P< 0.05. The vertical and horizontal lines indicate the true parameter values. ‘Significant’ results
tend to overestimate the population mean and underestimate the population standard deviation
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3.2 Multiple Comparisons

Multiple testing is the situation where the tension between global and local
considerations is most stark. It is also the situation where the well-known jelly
beans cartoon from XKCD.com is irresistible (Fig. 7). The cartoon scenario is that
jelly beans were suspected of causing acne, but a test found “no link between jelly
beans and acne (P> 0.05)”, and so the possibility that only a certain colour of jelly
bean causes acne is then entertained. All 20 colours of jelly bean are independently
tested, with only the result from green jelly beans being significant, “(P< 0.05)”.
The newspaper headline at the end of the cartoon mentions only the green jelly beans
result, and it does that with exaggerated certainty. The usual interpretation of that
cartoon is that the significant result with green jelly beans is likely to be a false
positive because, after all, hypothesis testing with the threshold of P< 0.05 is
expected to yield a false positive one time in 20, on average, when the null is true.

The more hypothesis tests there are, the higher the risk that one of them will yield
a false positive result. The textbook response to multiple comparisons is to introduce
‘corrections’ that protect an overall maximum false positive error rate by adjusting
the threshold according to the number of tests in the family to give protection from
inflation of the family-wise false positive error rate. The Bonferroni adjustment is the
best-known method, and while there are several alternative ‘corrections’ that per-
form a little better, none of those is nearly as simple. A Bonferroni adjustment for the
family of experiments in the cartoon would preserve an overall false positive error
rate of 5% by setting a threshold for significance of 0.05 ∕ 20¼ 0.0025 in each of the
20 hypothesis tests.14 It must be noted that such protection does not come for free,
because adjustments for multiplicity invariably strip statistical power from the
analysis.

We do not know whether the ‘significant’ link between green jelly beans and acne
would survive a Bonferroni adjustment because the actual P-values were not sup-
plied,15 but as an example, a P-value of 0.003, low enough to be quite encouraging
as the result of a significance test, would be ‘not significant’ according to the
Bonferroni adjustment. Such a result that would present us with a serious dilemma
because the inference supported by the local evidence would be apparently
contradicted by global error rate considerations. However, that contradiction is not
what it seems because the null hypothesis of the significance test P-value is a
different null hypothesis from that tested by the Bonferroni-adjusted hypothesis
test. The significance test null concerns only the green jelly beans whereas the null
hypothesis of the Bonferroni is an omnibus null hypothesis that says that the link
between green jelly beans on acne is zero and the link between purple jelly beans on

14You may notice that the first test of jelly beans without reference to colour has been ignored here.
There is no set rule for saying exactly which experiments constitute a family for the purposes of
correction of multiplicity.
15That serves to illustrate one facet of the inadequacy of reporting ‘P less thans’ in place of actual P-
values.
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Fig. 7 Multiple testing
cartoon from XKCD, https://
xkcd.com/882/
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acne is zero and the link between brown jelly beans is zero, and so on. The P-value
null hypothesis is local and the omnibus null is global. The global null hypothesis
might be appropriate before the evidence is available (i.e. for power calculations and
experimental planning), but after the data are in hand the local null hypothesis
concerning just the green jelly beans gains importance.

It is important to avoid being blinded to the local evidence by a non-significant
global. After all, the pattern of evidence in the cartoon is exactly what would be
expected if the green colouring agent caused acne: green jelly beans are associated
with acne but the other colours are not. (The failure to see an effect of the mixed jelly
beans in the first test is easily explicable on the basis of the lower dose of green.) If
the data from the trial of green jelly beans is independent of the data from the trials of
other colours, then there is no way that the existence of those other data – or their
analysis – can influence the nature of the green data. The green jelly bean data cannot
logically have been affected by the fact that mauve and beige jelly beans were tested
at a later point in time – the subsequent cannot affect the previous – and the
experimental system would have to be bizarrely flawed for the testing of the purple
or brown jelly beans to affect the subsequent experiment with green jelly beans. If
the multiplicity of tests did not affect the data, then it is only reasonable to say that it
did not affect the evidence.

The omnibus global result does not cancel the local evidence, or even alter it, and
yet the elevated risk of a false positive error is real. That presents us with a dilemma
and, unfortunately, statistics does not provide a way around it. Global error rates and
local evidence operate in different logical spaces (Thompson 2007) and so there can
be no strictly statistical way to weigh them together. All is not lost, though, because
statistical limitations do not preclude thoughtful integration of local and the global
issues when making inferences. We just have to be more than normally cautious
when the local and global pull in different directions. For example, in the case of the
cartoon, the evidence in the data favours the idea that green jelly beans are linked
with acne (and if we had an exact P-value then we could specify the strength of
favouring) but because the data were obtained by a method with a substantial false
positive error rate we should be somewhat reluctant to take that evidence at face
value. It would be up to the scientist in the cartoon (the one with safety glasses) to
form a provisional scientific conclusion regarding the effect of green jelly beans,
even if that inference is that any decision should be deferred until more evidence is
available. Whatever the inference, the evidence, theory, the method, any other
corroborating or rebutting information should all be considered and reported.

A man or woman who sits and deals out a deck of cards repeatedly will eventually get a very
unusual set of hands. A report of unusualness would be taken differently if we knew it was
the only deal made, or one of a thousand deals, or one of a million deals, etc. – Tukey (1991,
p. 133)

In isolation the cartoon experiments are probably only sufficient to suggest that
the association between green jelly acne is worthy of further investigation (with the
earnestness of that suggestion being inversely related to the size of the relevant P-
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value). The only way to be in a position to report an inference concerning those jelly
beans without having to hedge around the family-wise false positive error rate and
the significance filter is to re-test the green jelly beans. New data from a separate
experiment will be free from the taint of elevated family-wise error rates and
untouched by the significance filter exaggeration machine. And, of course, all of
the original experiments should be reported alongside the new, as well as reasoned
argument incorporating corroborating or rebutting information and theory.

The fact that a fresh experiment is necessary to allow a straightforward conclu-
sion about the effect of the green jelly beans means that the experimental series
shown in the cartoon is a preliminary, exploratory study. Preliminary or exploratory
research is essential to scientific progress and can merit publication as long as it is
reported completely and openly as preliminary. Too often scientists fall into the
pattern of misrepresenting the processes that lead to their experimental results,
perhaps under the mistaken assumption that science has to be hypothesis driven
(Medawar 1963; du Prel et al. 2009; Howitt and Wilson 2014). That misrepresenta-
tion may take the form of a suggestion, implied or stated, that the green jelly beans
were the intended subject of the study, a behaviour described as HARKing for
hypothesising after the results are known, or cherry picking where only the signifi-
cant results are presented. The reason that HARKing is problematical is that
hypotheses cannot be tested using the data that suggested the hypothesis in the
first place because those data always support that hypothesis (otherwise they would
not be suggesting it!), and cherry picking introduces a false impression of the nature
of the total evidence and allows the direct introduction of experimenter bias. Either
way, focussing on just the unusual observations from a multitude is bad science. It
takes little effort and few words to say that 20 colours were tested and only the green
yielded a statistically significant effect, and a scientist can (should) then hypothesise
that green jelly beans cause acne and test that hypothesis with new data.

3.3 P-hacking

P-hacking is where an experiment or its analysis is directed at obtaining a small
enough P-value to claim significance instead of being directed at the clarification of a
scientific issue or testing of a hypothesis. Deliberate P-hacking does happen, perhaps
driven by the incentives built into the systems of academic reward and publication
imperatives, but most P-hacking is accidental – honest researchers doing ‘the wrong
thing’ through ignorance. P-hacking is not always as wrong as might be assumed, as
the idea of P-hacking comes from paying attention exclusively to global consider-
ation of error rates, and most particularly to false positive error rates. Those most
stridently opposed to P-hacking will point to the increased risk of false positive
errors, but rarely to the lowered risk of false negative errors. I will recklessly note
that some categories of P-hacking look entirely unproblematical when viewed
through the prism of local evidence. The local versus global distinction allows a
more nuanced response to P-hacking.

A Reckless Guide to P-values 245



Some P-hacking is outright fraud. Consider this example that has recently come
to light:

One sticking point is that although the stickers increase apple selection by 71%, for some
reason this is a p value of .06. It seems to me it should be lower. Do you want to take a look at
it and see what you think. If you can get the data, and it needs some tweeking, it would be
good to get that one value below .05.

– Email from Brian Wansink to David Just on Jan. 7, 2012. – Lee (2018)

I do not expect that any readers would find P-hacking of that kind to be
acceptable. However, the line between fraudulent P-hacking and the more innocent
P-hacking through ignorance is hard to define, particularly so given the fact that
some behaviours derided as P-hacking can be perfectly legitimate as part of a
scientific research program. Consider this cherry picked list16 of responses to a P-
value being greater than 0.05 that have been described as P-hacking (Motulsky
2014):

• Analyse only a subset of the data;
• Remove suspicious outliers;
• Adjust data (e.g. divide by body weight);
• Transform the data (i.e. logarithms);
• Repeat to increase sample size (n).

Before going any further I need to point out that Motulsky has a more realistic
attitude to P-hacking than might be assumed from my treatment of his list. He writes:
“If you use any form of P-hacking, label the conclusions as ‘preliminary’.”
(Motulsky 2014, p. 1019).

Analysis of only a subset of the data is illicit if the unanalysed portion is omitted
in order to manipulate the P-value, but unproblematical if it is omitted for being
irrelevant to the scientific question at hand. Removal of suspicious outliers is similar
in being only sometimes inappropriate: it depends on what is meant by the term
“outlier”. If it indicates that a datum is a mistake such as a typographical or
transcriptional error, then of course it should be removed (or corrected). If an outlier
is the result of a technical failure of a particular run of the experimental, then perhaps
it should be removed, but the technical success or failure of an experimental run must
not be judged by the influence of its data on the overall P-value. If with word outlier
just denotes a datum that is further from the mean than the others in the dataset, then
omit it at your peril! Omission of that type of outlier will reduce the variability in the
data and give a lower P-value, but will markedly increase the risk of false positive
results and it is, indeed, an illicit and damaging form of P-hacking.

Adjusting the data by standardisation is appropriate – desirable even – in some
circumstances. For example, if a study concerns feeding or organ masses, then
standardising to body weight is probably a good idea. Such manipulation of data

16There are nine specified in the original but I discuss only five: cherry picking!

246 M. J. Lew



should be considered P-hacking only if an analyst finds a too large P-value in
unstandardised data and then tries out various re-expressions of the data in search
of a low P-value, and then reports the results as if that expression of the data was
intended all along. The P-hackingness of log-transformation is similarly situationally
dependent. Consider pharmacological EC50s or drug affinities: they are strictly
bounded at zero and so their distributions are skewed. In fact the distributions are
quite close to log-normal and so log-transformation before statistical analysis is
appropriate and desirable. Log-transformation of EC50s gives more power to
parametric tests and so it is common that significance testing of logEC50s gives
lower P-values than significance testing of the un-transformed EC50s. An experi-
enced analyst will choose the log-transformation because it is known from empirical
and theoretical considerations that the transformation makes the data better match
the expectations of a parametric statistical analysis. It might sensibly be categorised
as P-hacking only if the log-transformation was selected with no justification other
than it giving a low P-value.

The last form of P-hacking in the list requires a good deal more consideration than
the others because, well, statistics is complicated. That consideration is facilitated by
a concrete scenario – a scenario that might seem surprisingly realistic to some
readers. Say you run an experiment with n¼ 5 observations in each of two indepen-
dent groups, one treated and one control, and obtain a P-value of 0.07 from Student’s
t-test. You might stop and integrate the very weak evidence against the null
hypothesis into your inferential considerations, but you decide that more data will
clarify the situation. Therefore you run some extra replicates of the experiment to
obtain a total of n¼ 10 observations in each group (including the initial 5), and find
that the P-value for the data in aggregate is 0.002. The risk of the ‘significant’ result
being a false positive error is elevated because the data have had two chances to lead
you to discard the null hypothesis. Conventional wisdom says that you have
P-hacked. However, there is more to be considered before the experiment is
discarded.

Conventional wisdom usually takes the global perspective. As mentioned above,
it typically privileges false positive errors over any other consideration, and calls the
procedure invalid. However, the extra data has added power to the experiment and
lowered the expected P-value for any true effect size. From a local evidence point of
view, increasing the sample increases the amount of evidence available for use in
inference, which is a good thing. Is extending an experiment after the statistical
analysis a good thing or a bad thing? The conventional answer is that it is a bad thing
and so the conventional advice is don’t do it! However, a better response might
balance the bad effect of extending the experiment with the good. Consideration of
the local and global aspects of statistical inference allows a much more nuanced
answer. The procedure described would be perfectly acceptable for a preliminary
experiment.

Technically the two-stage procedure in that scenario allows optional stopping.
The scenario is not explicit, but it can be discerned that the stopping rule was, in
effect, run n¼ 5 and inspect the P-value; if it is small enough, then stop and make
inferences about the null hypothesis; if the P-value is not small enough for the stop
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but nonetheless small enough to represent some evidence against the null hypothesis,
add an extra 5 observations to each group to give n¼ 10, stop, and analyse again. We
do not know how low the interim P-value would have to be for the protocol to stop,
and we do not know how high it could be and the extra data still be gathered, but no
matter where those thresholds are set, such stopping rules yield false positive rates
higher than the nominal critical value for stopping would suggest. Because of that,
the conventional view (the global perspective, of course) is that the protocol is
invalid, but it would be more accurate to say that such a protocol would be invalid
unless the P-value or the threshold for a Neyman–Pearsonian dichotomous decision
is adjusted as would be done with a formal sequential test. It is interesting to note that
the elevation of false positive rate is not necessarily large. Simulations of the
scenario as specified and with P< 0.1 as the threshold for continuing show that
the overall false positive error rate would be about 0.008 when the critical value for
stopping at the first stage is 0.005, and about 0.06 when that critical value is 0.05.

The increased rate of false positives (global error rate) is real, but that does not
mean that the evidential meaning of the final P-value of 0.002 is changed. It is the
same local evidence against the null as if it was obtained from a simpler one stage
protocol with n¼ 10. After all, the data are exactly the same as if the experimenter
had intended to obtain n¼ 10 from the beginning. The optional stopping has
changed the global properties of the statistical procedure but not the local evidence
which contained in the actualised data.

You might be wondering how it is possible that the local evidence be unaffected
by a process that increases the global false positive error rate. The rationale is that the
evidence is contained within the data but the error rate is a property of the procedure
– evidence is local and error rates are global. Recall that false positive errors can only
occur when the null hypothesis is true. If the null is true, then the procedure has
increased the risk of the data leading us to a false positive decision, but if the null is
false, then the procedure has decreased the risk of a false negative decision. Which
of those has paid out in this case cannot be known because we do not know the truth
of this local null hypothesis. It might be argued that an increase in the global risk of
false positive decisions should outweigh the decreased risk of false negatives, but
that is a value judgement that ought to take into account particulars of the experiment
in question, the role of that experiment in the overall study, and other contextual
factors that are unspecified in the scenario and that vary from circumstance to
circumstance.

So, what can be said about the result of that scenario? The result of P¼ 0.002
provides moderately strong evidence against the null hypothesis, but it was obtained
from a procedure with sub-optimal false positive error characteristics. That
sub-optimality should be accounted for in the inferences that made from the evi-
dence, but it is only confusing to say that it alters the evidence itself, because it is the
data that contain the evidence and the sub-optimality did not change the data.
Motulsky provides good advice on what to do when your experiment has the
optional stopping:
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• For each figure or table, clearly state whether or not the sample size was chosen in
advance, and whether every step used to process and analyze the data was planned as part
of the experimental protocol.

• If you used any form of P-hacking, label the conclusions as “preliminary.”

Given that basic pharmacological experiments are often relatively inexpensive
and quickly completed one can add to that list the option of also corroborating
(or not) those results with a fresh experiment designed to have a larger sample size
(remember the significance filter exaggeration machine) and performed according to
the design. Once we move beyond the globalist mindset of one-and-done such an
option will seem obvious.

3.4 What Is a Statistical Model?

I remind the reader that this chapter is written under the assumption that
pharmacologists can be trusted to deal with the full complexity of statistics. That
assumption gives me licence to discuss unfamiliar notions like the role of the
statistical model in statistical analysis. All too often the statistical model is often
invisible to ordinary users of statistics and that invisibility encourages thoughtless
use of flawed and inappropriate models, thereby contributing to the misuse of
inferential statistics like P-values.

A statistical model is what allows the formation of calibrated statistical inferences
and non-trivial probabilistic statements in response to data. The model does that by
assigning probabilities to potential arrangements of data. A statistical model can be
thought of as a set of assumptions, although it might be more realistic to say that a
chosen statistical model imposes a set of assumptions onto the experimenter.

I have often been struck by the extent to which most textbooks, on the flimsiest of evidence,
will dismiss the substitution of assumptions for real knowledge as unimportant if it happens
to be mathematically convenient to do so. Very few books seem to be frank about, or perhaps
even aware of, how little the experimenter actually knows about the distribution of errors in
his observations, and about facts that are assumed to be known for the purposes of statistical
calculations.

– Colquhoun (1971, p. v)

Statistical models can take a variety of forms (McCullagh 2002), but the model
for the familiar Student’s t-test for independent samples is reasonably representative.
That model consists of assumed distributions (normal) of two populations with
parameters mean (μ1 and μ2) and standard deviation (σ1 and σ2),

17 and a rule for
obtaining samples (e.g. a randomly selected sample of n¼ 6 observations from each

17The ordinary Student’s t-test assumes that σ1¼ σ2, but the Welch-Scatterthwaite variant relaxes
that assumption.
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population). A specified value of the difference between means serves as the null
hypothesis, so H0 : μ1 � μ2 ¼ δH0 . The test statistic is

18

t ¼ ðx1 � x2Þ � δH0

sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 ∕ n1 þ 1 ∕ n2
p

where x is a sample mean and sp is the pooled standard deviation. The explicit
inclusion of a null hypothesis term in the equation for t is relatively rare, but it is
useful because it shows that the null hypothesis is just a possible value of the
difference between means. Most commonly the null hypothesis says that the differ-
ence between means is zero – it can be called a ‘nill-null’ – and in that case the
omission of δH0 from the equation makes no numerical difference.

Values of t calculated by that equation have a known distribution when μ1 �
μ2 ¼ δH0, and that distribution is Student’s t-distribution.19 Because the distribution
is known it is possible to define hypothesis test acceptance regions for any level of α
for a hypothesis test, and any observed t-value can be converted into a P-value in a
significance test.

An important problem that a pharmacologist is likely to face when using a
statistical model is that it is just a model. Scientific inferences are usually intended
to communicate something about the real world, not the mini world of a statistical
model, and the connection between a model-based probability of obtaining a test
statistic value and the state of the real world is always indirect and often inscrutable.
Consider the meaning conveyed by an observed P-value of 0.002. It indicates that
the data are strange or unusual compared to the expectations of the statistical model
when the parameter of interest is set to the value specified by the null hypothesis. The
statistical model expects a P-value of, say, 0.002 to occur only two times out of a
thousand on average when the null is true. If such a P-value is observed, then one of
these situations has arisen:

• a two in a thousand accident of random sampling has occurred;
• the null hypothesised parameter value is not close to the true value;
• the statistical model is flawed or inapplicable because one or more of the

assumptions underlying its application are erroneous.

Typically only the first and second are considered, but the last is every bit as
important because when the statistical model is flawed or inapplicable then the
expectations of the model are not relevant to the real-world system that spawned
the data. Figure 8 shows the issue diagrammatically. When we use that statistical
inference to inform inferences about the real world we are implicitly assuming:

18Oh no! An equation! Don’t worry, it’s the only one, and, anyway, it is too late now to stop
reading.
19Technically it is the central Student’s t-distribution. When δ 6¼ δH0 it is a non-central t-distribution
(Cumming and Finch 2001).
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(1) that the real-world system that generated the data is an analogue to the population
in the statistical model; (2) that the way the data were obtained is well described by
the sampling rule of the statistical model; and (3) that the observed data is analogous
to the random sample assumed in the statistical model. To the degree that those
assumptions are erroneous there is degradation of the relevance of the model-based
statistical inference to the real-world inference that is desired.

Considerations of model applicability are often limited to the population distribu-
tion (is my data normal enough to use a Student’s t-test?) but it is much more
important to consider whether there is a definable population that is relevant to the
inferential objectives and whether the experimental units (“subjects”) approximate a
random sample. Cell culture experiments are notorious for having ill-defined
populations, and while experiments with animal tissues may have a definable
population, the animals are typically delivered from an animal breeding or holding
facility and are unlikely to be a random sample. Issues like those mean that the
calibration of uncertainty offered by statistical methods might be more or less
uncalibrated. For good inferential performance in the real world, there has to be a
flexible and well-considered linking of model-based statistical inferences and scien-
tific inferences concerning the real world.

Population

Statistical model

Real world

Real world system 
under investigation

Sample

Data

Sampling

Inference

  Assumed to be equivalent

Desired
inference

Assumed 
to be 

relevant

Fig. 8 Diagram of inference
using a statistical model
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4 P-values and Inference

A P-value tells you how well the data match with the expectations of a statistical
model when the null hypothesis is true. But, as we have seen, there are many
considerations that have to be made before a low P-value can safely be taken to
provide sufficient reason to say that the null hypothesis is false. What’s more,
inferences about the null hypothesis are not always useful. Royall argues that there
are three fundamental inferential questions that should be considered when making
scientific inferences (Royall 1997) (here paraphrased and re-ordered):

1. What do these data say?
2. What should I believe now that I have these data?
3. What should I do or decide now that I have these data?

Those questions are distinct, but not entirely independent and there is no single
best way to answer to any of them.

A P-value from a significance test is an answer to the first question. It
communicates how strongly the data argue against the null hypothesis, with a
smaller P-value being a more insistent shout of “I disagree!”. However, the answer
provided by a P-value is at best incomplete, because it is tied to a particular null
hypothesis within a particular statistical model and because it captures and
communicates only some of the information that might be relevant to scientific
inference. The limitations of a P-value can be thought of as analogous to a black and
white photograph that captures the essence of a scene, but misses coloured detail that
might be vital for a correct interpretation.

Likelihood functions provide more detail than P-values and so they can be
superior to P-values as answers to the question of what the data say. However,
they will be unfamiliar to most pharmacologists and they are not immune to
problems relating to the relevance of the statistical model and the peculiarities of
experimental protocol.20 As this chapter is about P-values, we will not consider
likelihoods any further, and those who, correctly, see that they might offer utility can
read Royall’s book (Royall 1997).

The second of Royall’s questions, what should I believe now that I have these
data?, requires integration of the evidence of the data with what was believed prior to
the evidence being available. A formal statistical combination of the evidence with
prior beliefs can be done using Bayesian methods, but they are rarely used for the
analysis of basic pharmacological experiments and are outside the scope of this
chapter about P-values. Considerations of belief can be assisted by P-values because
when the data argue strongly against the null hypothesis one should be less inclined

20Royall (1997) and other proponents of likelihood-based inference (e.g. Berger and Wolpert 1988)
make a contrary argument based on the likelihood principle and the (irrelevance of) sampling rule
principle, but those arguments may fall down when viewed with the local versus global distinction
in mind. Happily, those issues are beyond the scope of this chapter.
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to believe it true, but it is important to realise that P-values do not in any way
measure or communicate belief.

The Neyman–Pearsonian hypothesis test framework was devised specifically to
answer the third question: it is a decision theoretic framework. Of course, it is a good
decision procedure only when α is specified prior to the data being available, and
when a loss function informs the experimental design. And it is only useful when
there is a singular decision to be made regarding a null hypothesis, as can be the case
in acceptance sampling and in some randomised clinical trials. A singular decision
regarding a null hypothesis is rarely a sufficient inference from the collection of
experiments and observations that typically make up a basic pharmacological studies
and so hypothesis tests should not be a default analytical tool (and the hybrid NHST
should not be used in any circumstance).

Readers might feel that this section has failed to provide a clear method for
making inferences about any of the three questions, and they would be correct.
Statistics is a set of tools to help with inferences and not a set of inferential recipes,
scientific inferences concerning the real world have to be made by scientists, and my
intention with this reckless guide to P-values is to encourage an approach to
scientific inference that is more thoughtful than statistical significance. After all,
those scientists invariably know much more than statistics does about the real world,
and have a superior understanding of the system under study. Scientific inferences
should be made after principled consideration of the available evidence, theory and,
sometimes, informed opinion. A full evaluation of evidence will include both
consideration of the strength of the local evidence and the global properties of the
experimental system and statistical model from which that evidence was obtained. It
is often difficult, just like statistics, and there is no recipe.
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Abstract
Documentation of experiments is essential for best research practice and ensures
scientific transparency and data integrity. Traditionally, the paper lab notebook
(pLN) has been employed for documentation of experimental procedures, but
over the course of the last decades, the introduction of electronic tools has
changed the research landscape and the way that work is performed. Nowadays,
almost all data acquisition, analysis, presentation and archiving are done with
electronic tools. The use of electronic tools provides many new possibilities, as
well as challenges, particularly with respect to documentation and data quality.
One of the biggest hurdles is the management of data on different devices with a
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substantial amount of metadata. Transparency and integrity have to be ensured
and must be reflected in documentation within LNs. With this in mind, electronic
LNs (eLN) were introduced to make documentation of experiments more
straightforward, with the development of enhanced functionality leading gradu-
ally to their more widespread use. This chapter gives a general overview of eLNs
in the scientific environment with a focus on the advantages of supporting quality
and transparency of the research. It provides guidance on adopting an eLN and
gives an example on how to set up unique Study-IDs in labs in order to maintain
and enhance best practices. Overall, the chapter highlights the central role of
eLNs in supporting the documentation and reproducibility of experiments.

Keywords
Data management · Documenting experiments · Lab journal · Paper and electronic
lab notebook · Study-ID

1 Paper vs. Electronic Lab Notebooks

Documentation of experiments is critical to ensure best practice in research and is
essential to understand and judge data integrity. Detailed and structured document-
ation allows for researcher accountability as well as the traceability and reproduci-
bility of data. Additionally, it can be used in the resolution of intellectual property
issues. Historically, this had been performed by documentation in conventional
paper laboratory notebooks (pLN). Lab notebooks (LN) are considered the primary
recording space for research data and are used to document hypotheses, experiments,
analyses and, finally, interpretation of the data. Originally, raw and primary data
were recorded directly into the lab book and served as the basis for reporting and
presenting the data to the scientific community (Fig. 1a), fulfilling the need for
transparent and reproducible scientific work.

The situation has become much more complex with the entry of electronic tools
into the lab environment. Most experimental data is now acquired digitally, and the
overall amount and complexity of data have expanded significantly (Fig. 1b). Often,
the data is acquired with a software application and processed with secondary tools,
such as dedicated data analysis packages. This creates different databases, varying
both in volume and the type of produced data. Additionally, there can be different
levels of processed data, making it difficult to identify the unprocessed, or raw, data.
The experimental data must also be archived in a way that it is structured, traceable
and independent of the project or the data source. These critical points require new
data management approaches as the conventional pLN is no longer an alternative
option in today’s digital environment.

Current changes in the type, speed of accumulation and volume of data can be
suitably addressed by use of an electronic laboratory notebook (eLN). An eLN that
can be used to document some aspects of the processes is the first step towards
improvement of data management (Fig. 1b). Ultimately, eLNs will become a central
tool for data storage and connection and will lead to improvements in transparency
and communication between scientists, as it will be discussed in the last two sections
of this chapter.
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Although both paper and electronic LNs have advantages and disadvantages
(Table 1), ultimately the overall switch of researchers from the use of pLNs to
eLNs is inevitable. The widespread use of electronic tools for acquiring, analysing

Fig. 1 (a) Traditional data flow: The lab book is an integral part of scientific data flow and serves as
a collection of data and procedures. (b) An example of a more complex data flow might commonly
occur today. Unfortunately, lab books and eLNs are often not used to capture all data flows in the
modern laboratory
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and managing data renders traditional pLNs impractical in modern science. Never-
theless, the switch to eLN usage is gradual and will take time. Several groups
documented and have published their experiences and discussed the biggest barriers
for establishing the standardized use of eLNs. Kanza et al. carried out detailed
analyses, based on surveys, focusing on potential obstacles to the application of
eLNs in an academic laboratory setting (Kanza et al. 2017). According to their
results, the major barriers are cost, ease of use and accessibility across devices.
Certainly, these aspects seem to be valid at first glance and need to be considered
carefully. A more detailed examination provides means to address these issues as
progress has been made in the development of tailored solutions.

As mentioned, cost is often the most significant hurdle to overcome when
adopting the use of an eLN. In this regard, pLNs have a clear advantage because
they require close to no infrastructure. In contrast, there are multiple different eLN
device options which vary widely, from freeware to complex solutions, which can
have costs of up to thousands of euros per researcher. This is, however, evolving
with the use of cloud-based software-as-a-service (SaaS) products which are avail-
able for a monthly subscription. One of the major advantages of SaaS is that the
software version will always be up-to-date. Today, many of these SaaS solutions are
available as online tools which can also be used within a firewall to have maximum

Table 1 Overview of advantages and disadvantages of paper and electronic lab notebooks

Characteristic Paper lab notebooks Electronic lab notebooks

Data
accessibility

Restricted access, needs copying,
often inaccessible once a researcher
leaves a lab

Advanced data sharing, direct links
to all types of files

Data
organization

Chronological order of experiments
with page numbers

Flexible organization of
experimental data, parallel
documentation of different projects

Data
presentation

All electronic data has to be printed or
referenced

Direct access to large data files via
links

Templates None Documentation facilitated by
templates

Peer review and
sharing
information

Difficult Viewing/editing permissions can be
granted to individuals and groups of
people

Search for
keywords

Not possible Possible

Ease of use Easy to use, intuitive, flexible Many different solutions, DIY

Audit trail Witnessing with a signature Witnessing with an electronic
signature, not always
straightforward with DYI eLN

IT support Not required Needs IT infrastructure,
accessibility across devices is not
always possible

Costs Low Can be expensive
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protection of the data. Most digital solutions, however, require the appropriate
hardware and infrastructure to be set up and updated.

In contrast to eLNs, pLNs do not require IT support and are, therefore, immedi-
ately usable, do not crash and are intuitive to use. However, in the majority of cases,
the data cannot be used directly but must be printed, and a general search cannot be
performed in the traditional lab book once the scientist who created it leaves the lab.
Thus, the primary disadvantages of paper notebooks are the inability to share
information, link electronic data, retrieve the information and search with keywords.

Different types of LNs are summarized in Table 2. A pLN can be seen as the
primary place for reporting research. Simple electronic tools such as word
processors, or do-it-yourself (DIY) solutions (Dirnagl and Przesdzing 2017), provide
this in electronic format. A DIY eLN is a structured organization of electronic data
without dedicated software, using instead simple software and data organization
tools, such as Windows Explorer, OneNote, text editors or word processors, to
document and organize research data (see the last two sections of this chapter for
tips on how to create a DIY eLN). In contrast, dedicated and systemic versions of
eLNs provide functionality for workflows, standard data entry as well as search and
visualization tools. The systemic eLNs provide additional connections to laboratory
information management systems (LIMS), which have the capability to organize
information in different aspects of daily lab work, for example, in the organization of
chemicals, antibodies, plasmids, clones, cell lines and animals and in calendars to
schedule usage of devices. Following the correct acquisition of very large datasets
(e.g. imaging, next-generation sequencing, high-throughput screens), eLN should
support their storage and accessibility, becoming a central platform to store, connect,
edit and share the information.

The traditional pLN is still widely used in academic settings and can serve as a
primary resource for lab work documentation. Simple versions of eLNs improve the
data documentation and management, for example, in terms of searching, accessi-
bility, creation of templates and sharing of information. However, with an increasing
amount of work taking place in a complex digital laboratory environment and the
associated challenges with regard to data management, eLNs that can connect,
control, edit and share different data sources will be a vital research tool.

Table 2 Overview of different levels of complexity of laboratory notebooks

Type Explanation

Paper lab notebook Reporting of complete primary experimental data in paper format

Do-it-yourself electronic
lab notebook

Most simple form of eLN. Many different possibilities exist that
can be used as building blocks and combined to create a custom
solution (e.g. OneNote, MS Office documents, Dropbox,
OneDrive)

Dedicated electronic lab
notebook

Sophisticated and dedicated software solutions for reporting and
archiving complete primary experimental data

Systemic electronic lab
notebook

As above including full lab inventory management system
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2 Finding an eLN

Many different eLNs exist, and finding the appropriate solution can be tedious work.
This is especially difficult when different research areas need to be covered. Several
published articles and web pages provide guidance on this issue (are summarized in
the following paragraphs with additional reading provided in Table 3). However, a
dedicated one-size-fits-all product has, to date, not been developed. Several stand-

Table 3 Summary of published data describing selection and usage of eLNs

Author and
year Title Description

Rubacha
et al. (2011)

A review of electronic laboratory
notebooks available in the market today

Very comprehensive analysis of
eLNs on the market in 2011;
distinguishes between five different
categories

Nussbeck
et al. (2014)

The laboratory notebook in the twenty-
first century

A general advocacy for eLNs; good
background information about the
advantages

Oleksik and
Milic-
Frayling
(2014)

Study of an electronic lab notebook
design and practices that emerged in a
collaborative scientific environment

Comprehensive user experience of
establishing a DIY eLN (OneNote)
in a physics research lab

Guerrero
et al. (2016)

Analysis and implementation of an
electronic laboratory notebook in a
biomedical research institute

Quite comprehensive comparison of
six eLNs with a more in-depth
consideration of two devices
(PerkinElmer and OneNote)

Kanza et al.
(2017)

Electronic lab notebooks: can they
replace paper?

Broad and informative background
information on the use of eLNs

Riley et al.
(2017)

Implementation and use of cloud-based
electronic lab notebook in a bioprocess
engineering teaching laboratory

Practical guidance on setting up an
eLN (LabArchives) as an example
in a teaching lab

Dirnagl and
Przesdzing
(2017)

A pocket guide to electronic laboratory
notebooks in the academic life sciences

Experience report about setting up
an eLN in an academic lab

Maya Companies in the cloud: Digitizing lab
operations

Short description of several
commercial tools connecting lab
equipment with eLNs

Kwokb How to pick an electronic laboratory
notebook

Collection of several aspects to be
considered when choosing an eLN

The Gurdon
Institutec

Electronic lab notebooks – for
prospective users

Comprehensive and up-to-date
guidance on different eLNs

Atrium
Researchd

Electronic laboratory notebook products Most comprehensive list of eLNs
that are currently available on the
market

ahttps://www.sciencemag.org/features/2017/02/companies-cloud-digitizing-lab-operations
bhttps://www.nature.com/articles/d41586-018-05895-3
chttps://www.gurdon.cam.ac.uk/institute-life/computing/elnguidance
dhttp://atriumresearch.com/eln.html
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alone solutions have been developed for dedicated purposes, and other eLNs provide
the possibility to install “in programme applications”. These additional applications
can provide specific functionality for different research areas, e.g. for cloning.

Thus, the first course of action must be to define the needs of the research unit and
search for an appropriate solution. This solution will most likely still not cover all
specific requirements but should provide the functionality to serve as the central
resource for multiple different types of data. In this way, the eLN is a centralized
storage location for various forms of information and is embedded in the laboratory
environment to allow transparency and easy data exchange. Ideally, an eLN is the
place to store information, support the research process and streamline and optimize
workflows.

The following points must be considered in order to identify the best solution:

• Does the organization have the capability to introduce an eLN? A research unit
must judge the feasibility of eLN implementation based on different parameters:
– Financial resources: Setting up an eLN can be cost intensive over the years,

especially with the newly emerging model of “SaaS”, in which the software is
not bought but rented and paid for monthly.

– IT capability: It is important to have the knowledge in the research unit to set
up and provide training for users to adopt an eLN or at least to have a dedicated
person who is trained and can answer daily questions and provide some basic
training to new staff.

– Technical infrastructure: The technical equipment to support the eLN has to
be provided and maintained for the research unit, especially when hosted
within a research unit and not on external servers.

• At which level should the eLN be deployed and what is the research interest?
Clarification on these two considerations can dramatically reduce the number of
potential eLNs which are suitable for application in the research lab. For example,
a larger research unit covering more areas of research will need a general eLN, in
contrast to a smaller group which can get an eLN ready tailored to their specific
needs. An example of a field with very specific solutions is medicinal chemistry:
An eLN for application in a lab of this type should have the functionality to draw
molecules and chemical pathways, which will not be needed for an animal
research or image analysis lab. Having a clear idea about the requirements of a
research unit and necessary functionality will help in the choice of the correct
eLN resource.

• Which devices will be used to operate the eLN software? Many researchers
require the facility to create or update records “live” on the bench or other
experimental areas (e.g. undertaking live microscopy imaging), as well as on
other devices inside and outside of the lab (e.g. running a high-throughput robotic
screening in a facility). Alternatively, researchers may want to use voice recogni-
tion tools or to prepare handwritten notes and then transcribe into a tidier, more
organized record on their own computer. It should also be noted that some
vendors may charge additional fees for applications to run their software on
different device types.
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• Does the funding agreement require specific data security/compliance measures?
Some funding agencies require all data to be stored in a specific geographic
location to ensure compliance with local data protection regulations (e.g. General
Data Protection Regulation (GDPR)). Some eLN systems, however, are designed
to store content and data only on their own servers (i.e. in “the cloud”), in which
case a solution could be negotiated, or the provider cannot be used.

• Consider exporting capabilities of the eLN. This is a very critical point as the eLN
market is constantly changing and companies might be volatile. The eLN market
has existed for almost 20 years, during which time several solutions emerged and
disappeared or were bought by other companies. With these changes, there are
certain associated risks for the user, such as, for example, the fact that pricing
plans and/or data formats might change or the eLN could be discontinued.
Therefore, we consider it as an absolute requirement that all data can be easily
exported to a widely readable format that can be used with other applications.

It is advisable to identify a dedicated person within the research unit to prepare an
outline of the lab requirements and who will be educated about the available
technical solutions and prepare a shortlist. Subsequently, it is necessary to test the
systems. All eLN providers we have been in contact so far have been willing to
provide free trial versions for testing. Additionally, they usually provide training
sessions and online support for researchers to facilitate the adaptation of the system
more quickly.

When choosing an eLN, especially in academia, an important question will
always be the cost and how to avoid them. There is a debate about the usage of
open-source software, that is, free versions with some restrictions, or building a DIY
solution. A good resource in this context is the web page of Atrium Research &
Consulting, a scientific market research and consulting practice which provides a
comprehensive list of open-source solutions (http://atriumresearch.com/eLN.html).
It is important to note that open source is not always a truly open source – often it is
only free to use for non-commercial organizations. They can also come with some
limitations, for example, that all modifications must be published on the “source
website”. However, the industry is ready to accept open source with many examples
emerging, such as Tomcat or Apache, which are becoming in our experience de facto
industry standards. Important factors to be considered for choosing open-source
software are:

• The activity of the community maintaining the system (e.g. CyNote (https://
sourceforge.net/projects/cynote/) and LabJ-ng (https://sourceforge.net/projects/
labj/) was not updated for years, whereas eLabFTW (https://www.elabftw.net)
or OpenEnventory (https://sourceforge.net/projects/enventory/) seems to be
actively maintained.

• Maturity and structure of the documentation system.
• If the intended use is within the regulated environment, the local IT has to take

ownership.
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Open-source software, particularly in the light of best documentation practice,
will generate risks, which need to be handled and mitigated. This includes ensuring
the integrity of the quality system itself and guaranteeing data integrity and preven-
tion of data loss. To our knowledge, most open-source solutions cannot guarantee
this. This is one reason why a global open-source eLN doesn’t exist: there is no
system owner who could be held accountable and would take responsibility to
ensure data integrity.

The SaaS approach often uses cloud services as an infrastructure, e.g. Amazon
Web Services or Microsoft Azure. These services provide the foundation for the
web-based eLNs and are very easy to set up, test and use. These systems have a
significant benefit for smaller organizations, and it is worth investigating them. They
provide truly professional data centre services at a more affordable price, attracting
not only smaller research units but also big pharmaceutical companies to move into
using SaaS solutions to save costs.

3 Levels of Quality for eLNs

In principle, the “quality features” of eLNs can be related to three categories which
have to be considered when choosing or establishing an eLN: (1) System, (2) Data
and (3) Support.

System-related features refer to functionality and capability of the software:

• Different user rights: The ability to create different user levels, such as “not
share”, read-only, comment, modify or create content within the eLN, is one of
the big advantages. The sharing of information via direct access and finely tuned
user levels allows for individual sharing of information and full transparency
when needed.

• Audit trail: Here, a very prominent regulation for electronic records has to be
mentioned, the CFR21 Part 11. CFR stands for Code of Federal Regulations, Title
21 refers to the US Food and Drug Administration (FDA) regulations, and Part
11 of Title 21 is related to electronic records and electronic signatures. It defines
the criteria under which electronic records and electronic signatures are consid-
ered trustworthy, reliable and equivalent to paper records (https://www.
accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart¼11).
Hence, when choosing an eLN provider, it is important that the product adheres to
these regulations since this will ensure proper record keeping. Proper record
keeping in this case means that a full audit trail is implemented in the software
application.

• Archiving: Scientists need to constantly access and review research experiments.
Therefore, accessing and retrieving information relating to an experiment is an
essential requirement. The challenge with archiving is the readability and acces-
sibility of the data in the future. The following has to be considered when
choosing an eLN to archive data:
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– There is always uncertainty about the sustainability of data formats in the
future, especially important for raw data when saved in proprietary formats
(the raw data format dilemma resulted in several initiatives to standardize and
harmonize data formats).

– The eLN can lead to dependency on the vendor and the system itself.
– Most current IT systems do not offer the capability to archive data and export

them from the application. This results in eLNs becoming de facto data
collection systems, slowing down in performance over time with the increased
data volume.

Data-related features concern the ability to handle different scientific notations
and nomenclatures, but most importantly, to support researchers in designing,
executing and analysing experiments. For scientific notations and nomenclatures,
the support of so-called namespaces and the ability to export metadata, associated
with an experiment in an open and common data format, are a requirement. Several
tools are being developed aiming to assist researchers in designing, executing and
analysing experiments. These tools will boost and enhance quality of experimental
data, creating a meaningful incentive to change from pLNs towards eLNs. The
subsequent sections focus in detail on that point.

Support-related quality features affect the stability and reliability of the infra-
structure to support the system and data. The most basic concern is the reliability and
maintenance of the hardware. In line with that, fast ethernet and internet connections
must be provided to ensure short waiting times when loading data. The security of
the system must be ensured to prevent third-party intrusions, which can be addressed
by including appropriate firewall protection and virus scans. Correspondingly, it is
also very important to include procedures for systematic updates of the system. In
contrast, this can be difficult to ensure with open-source software developed by a
community. As long as the community is actively engaged, the software security will
be normally maintained. However, without a liable vendor, it can change quickly
and without notice. Only a systematic approach will ensure evaluation of risks and
the impact of enhancements, upgrades and patches.

4 Assistance with Experimental Design

The design of experiments (DOE) was first introduced in 1920 by Ronald Aylmer
Fisher and his team, who aimed to describe the different variabilities of experiments
and their influence on the outcome. DOE also refers to a statistical planning
procedure including comparison, statistical replication, randomization (chapter
“Blinding and Randomization”) and blocking. Designing an experiment is probably
the most crucial part of the experimental phase since errors that are introduced here
determine the development of the experiment and often cannot be corrected during
the later phases. Therefore, consultation with experienced researchers, statisticians
or IT support during the early phase can improve the experimental outcome. Many
tools supporting researchers during the DOE planning phase already exist. Although
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most of these tools have to be purchased, there are some freely available, such as the
scripting language R, which is widely used among statisticians and offers a wide
range of additional scripts (Groemping 2018).

An example of an interactive tool for the design and analysis of preclinical in vivo
studies is an online tool based on the R application (R-vivo) MANILA (MAtched
ANImaL Analysis). R-vivo is a browser-based interface for an R-package which is
mainly intended for refining and improving experimental design and statistical
analysis of preclinical intervention studies. The analysis functions are divided into
two main subcategories: pre-intervention and post-intervention analysis. Both
sections require a specific data format, and the application automatically detects
the most suitable file format which will be used for uploading into the system. A
matching-based modelling approach for allocating an optimal intervention group is
implemented, and randomization and power calculations take full account of the
complex animal characteristics at the baseline prior to interventions. The modelling
approach provided in this tool and its open-source and web-based software
implementations enable researchers to conduct adequately powered and fully blind
preclinical intervention studies (Laajala et al. 2016).

Another notable solution for in vivo research is the freely available Experimental
Design Assistant (EDA) from the National Centre for the Replacement, Refinement
and Reduction of Animals in Research (NC3R). NC3R is a UK-based scientific
organization aiming to find solutions to replace, refine and reduce the use of animals
in research (https://www.nc3rs.org.uk/experimental-design-assistant-eda). As one of
the goals, NC3R has developed the EDA, an online web application allowing the
planning, saving and sharing of individual information about experiments. This tool
allows an experimental plan to be set up, and the engine provides a critique and
makes recommendations on how to improve the experiment. The associated website
contains a wealth of information and advice on experimental designs to avoid many
of the pitfalls that have been previously identified, including such aspects as the
failure to avoid subjective bias, using the wrong number of animals and issues with
randomization. This support tool and the associated resources allow for better
experimental design and increase the quality in research, presenting an excellent
example for electronic study design tools. A combined usage of these online tools
and eLN would improve the quality and reproducibility of scientific research.

5 Data-Related Quality Aspects of eLNs

An additional data-related quality consideration, besides support with experimental
design, concerns the metadata. Metadata is the information important for under-
standing experiments by other researchers. Often, the metadata is generated by the
programme itself and needs a manual curation by the researcher to reach complete-
ness. In principle, the more metadata is entered into the system, the higher the value
of the data since it makes it possible to be analysed and understood in greater detail,
thus being reproducible in subsequent experiments.
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Guidance on how to handle metadata is provided in detail in chapter “Data
Storage” in the context of the FAIR principles and ALCOA. In brief, ALCOA,
and lately its expanded version ALCOAplus, is the industry standard used by the
FDA, WHO, PIC/S and GAMP to give guidance in ensuring data integrity. The
guidelines point to several important aspects, which also explain the acronym:

• Attributable: Who acquired the data or performed an action and when?
• Legible, Traceable and Permanent: Can you read the data and any entries?
• Contemporaneous: Was it recorded as it happened? Is it time-stamped?
• Original: Is it the first place that the data is recorded? Is the raw data also saved?
• Accurate: Are all the details correct?

The additional “plus” includes the following aspects:

• Complete: Is all data included (was there any repeat or reanalysis performed on
the sample)?

• Consistent: Are all elements documented in chronological order? Are all elements
of the analysis dated or time-stamped in the expected sequence?

• Enduring: Are all recordings and notes preserved over an extended period?
• Available: Can the data be accessed for review over the lifetime of the record?

These guiding principles can be used both for paper and electronic LNs, and the
questions can be asked by a researcher when documenting experiments. However,
eLNs can provide support to follow these regulations by using templates adhering to
these guiding principles, increasing transparency and trust in the data. The electronic
system can help to manage all of these requirements as part of the “metadata”, which
is harder to ensure with written lab notebooks or at least requires adaptation of
certain habits.

Having these principles in place is the first important step. Then, it needs to be
considered that the data will be transferred between different systems. Transferring
data from one specialized system to another is often prone to errors, e.g. copy-and-
paste error, loss of metadata, different formats and so on. Thus it must always be
considered when the information is copied, especially when data are processed
within one programme and then stored in another. It has also to be ensured that
data processing can be reproduced by other researchers. This step should be
documented in LNs, and eLNs can provide a valuable support by linking to different
versions of a file. There are myriad of applications to process raw data which come
with their own file formats. Ideally, these files are saved in a database (eLN or
application database), and the eLN can make a connection with a dedicated interface
(Application programming interfaces, API) between the analysis software and the
database. This step ensures that the metadata is maintained. By selecting the data at
the place of storage yet still using a specialized software, seamless connection and
usage of the data can be ensured between different applications. For some
applications, this issue is solved with dedicated data transfer protocols to provide a
format for exporting and importing data. The challenge of having a special API is
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recognized by several organizations and led to the formation of several initiatives,
including the Pistoia Alliance (https://www.pistoiaalliance.org) and the Allotrope
Foundation (https://www.allotrope.org). These initiatives aim to define open data
formats in cooperation with vendors, software manufactures and pharmaceutical
companies. In particular, Allotrope has released data formats for some technologies
which will be a requirement for effective and sustainable integration of eLNs into the
lab environment. Therefore, it is worth investing time to find solutions for supporting
storage, maintenance and transfer of research data.

6 The LN as the Central Element of Data Management

Today’s researcher faces a plethora of raw data files that in many cases tend to stay
within separated data generation and analysis systems. In addition, the amount of
data a scientist is able to generate with one experiment has increased exponentially.
Large data sets coming from omics and imaging approaches generate new data flows
in scientific work that are not captured by eLNs at all, primarily due to a lack of
connectivity. Thus, the eLN needs a structured approach to connect all experimental
data with the raw data (Fig. 2). This can most likely still be achieved with a pLN, but
support from digital tools seems to be obviously advantageous, which can be in the
form of a dedicated eLN or even a DIY approach. In any case, the approach will have
to evolve from a scientist’s criteria of an integrated data management system
meeting several requirements: Documentation of intellectual property generation,
integrated raw data storage and linking solutions and enhanced connectivity with lab
equipment, colleagues and the scientific community.

Several eLNs provide a user interface for document generation: Independent of
the kind of document created, the eLN should be the starting point by creating a
unique Study-ID and will add directly, or at least link, the credentials of the scientist
to the document. Some eLNs require the input of some basic information such as the
project, methods used or co-workers involved and will compile a master project file
with some essential metadata. Existing files like protocols or data packages can then
be linked in the master file. The master project file within the eLN acts as a map for
the landscape of scientific experiments belonging to one project. In a DIY approach,
these steps can also be created manually within a folder system (e.g. OneNote,
Windows Explorer, etc.) and a master file created in the form of a word processor file
(e.g. MS Office Word) or a page within OneNote. Of course, this can also be
achieved within a pLN, but, again, it is more effort to structure the information
and keep an overview. In all cases, each step of the scientific experiment process can
then be automatically tracked either by the eLN or manually to allow for fast data
location and high reproducibility. Even if copied elsewhere, recovery and identifica-
tion of ownership is easy with the help of the unique Study-ID. At the end of a series
of experiments or projects, the researcher or an artificial intelligence within the eLN
decides which files to pool in a PDF file, and after proofreading, somebody can mark
the project as completed. Thereby, the final document, best in the form of a PDF file,
will not only contain some major files but also the master file with the Study-IDs of

Electronic Lab Notebooks and Experimental Design Assistants 269

https://www.pistoiaalliance.org
https://www.allotrope.org


all data sets that are searchable and identifiable across the server of an organization.
This will also allow smart search terms making the organization of experimental data
very straightforward.

Unique Study-IDs for projects across an organization are key prerequisites to
cross-link various sets of documents and data files into a project (see the next section
on how to set up). Using an eLN as the managing software connecting loose ends
during the data generation period of a project and even right from the beginning will
free the researcher from the hurry to do so at the end of the project. This type of
software can easily be combined with an existing laboratory inventory management
system (LIMS) not only fulfilling the documentation duties but also adding the value
of project mapping.

In any case, enhanced connectivity is key for successful transparency. Enhanced
connectivity can be understood as connectivity across different locations and
between different scientists. In terms of different locations, a researcher can access
data, such as the experimental protocol, within the eLNs from the office and lab
areas. A tablet can be placed easily next to a bench showing protocols that could be
amended by written or spoken notes. Timer and calculation functions are nothing

Fig. 2 Workflow for the lab environment with the eLN/LIMS being the central element. Each
experimental setup will start with a unique Study-ID entry into the eLN in the experimental
catalogue which will be used throughout the whole experiment and allow for tagging during all
steps. The eLN will be the hub between the experimental procedure (left) and the data collection and
reporting (right). The eLN should collect all different types of data or at least provide the links to the
respective storage locations. One of the last steps is the summary of the experiment in the “Map of
the Data Landscape” in the form of a PDF file. Next-generation dedicated eLNs could themselves be
used to create such a document, thereby providing a document for reporting with the scientific
community and storage in the data warehouse
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new but form an essential part of daily lab work and need to be easily accessible.
In very advanced applications, enhanced connectivity is implemented using camera
assistance in lab goggles capturing essential steps of the experiment. If coupled to
optical character recognition (OCR) and artificial intelligence (AI) for identifying the
devices and materials used and notes taken, a final photograph protocol might form
part of the documentation. Information on reagent vessels would be searchable and
could easily be reordered. Connectivity to compound databases would provide
information about molecular weight with just one click and can be used to help a
researcher check compound concentrations during an experiment. A tablet with the
facility to connect to lab devices can be used to show that the centrifuge next door is
ready or that there is available space at a sterile working bench or a microscope.
These benefits allow seamless, transparent and detailed documentation without any
extra effort.

Connectivity between researchers within an organization can be optimized in a
different way by using electronic tools. At some point, results may need to be
presented on slides to others in a meeting. Assuming best meeting practice is applied,
these slides will be uploaded to a folder or a SharePoint. After a certain period, it may
become necessary to access again the data presented in the files uploaded to the
SharePoint. SharePoint knowledge usually lacks connectivity to raw data as well as
to researchers that have not been part of a particular meeting. However, a unique
identifier to files of a project will allow for searchability and even could render
SharePoint data collections redundant. Feedback from a presentation and results of
data discussion might be added directly to a set of data rather than to a presentation
of interpreted raw data. The whole process of data generation, its interpretation and
discussion under various aspects followed by idea generation, re-analyses and new
experiments can become more transparent with the use of electronic tools. An eLN
may also potentially be used to enhance clarity with respect to the ownership of ideas
and experimental work.

7 Organizing and Documenting Experiments

Unique Study-IDs are important components for appropriate and transparent docu-
mentation and data management. Creating a structured approach for the accessibility
of experimental data is reasonably straightforward, although it requires discipline.
Unique Study-IDs should be used in all lab environments independent of the LN
used. The DIY eLN is discussed here as an example by which to structure the data,
which can be achieved with a generic software such as OneNote, as described by
Oleksik and Milic-Frayling (2014), or can be implemented within Windows
Explorer and a text editing programme, such as Word. Dedicated eLNs will provide
the Study-ID automatically, but in the case of a DIY eLN (or LN), this must be set up
and organized by the researcher. Several possibilities exist, and one can be creative,
yet consistent, to avoid any confusion. The Study-ID will not only help to identify
experiments but will also assist a scientist in structuring their data in general.
Therefore, it should be kept simple and readable.
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A possible labelling strategy could be to include the date, with several formats
possible, depending on preference (e.g. DDMMYY, YY-MM-DD, YYMMDD). It
is, however, advisable to agree on one format which is then used throughout the
research unit. The latter one (YYMMDD), for example, has the advantage that files
are directly ordered according to the day if used as the prefix of a file name or, even
better, if used as a suffix. When used as a suffix, files with the same starting name are
always ordered according to the date. If several experiments are planned on the same
day, a short additional suffix in the form of a letter can distinguish the experiments
(YYMMDD.A and YYMMDD.B). Such a unique identifier could be created on the
day when the experiment was planned and should always be used throughout the
experiment to identify experimental materials (such as in labelling cell culture plates,
tubes, immunohistochemistry slides, Western blots and so on). It is also advisable to
add some more information to the name of the folder to get a better overview and use
only the Study-ID and short numbers for temporary items or items with little
labelling space (e.g. for cell culture plates and tubes).

Another possibility to categorize experiments is by using “structured” numbers
and categories created by the researcher and then using running numbers to create
unique IDs. Table 4 provides examples of potential categories. The researcher can be
creative here and set up a system to fit their requirements. The main purpose is to
create a transparent system to be able to exactly trace back each sample in the lab.

Table 4 Implementing a unique Study-ID system, an example

Number of
experimental
categories

Description
of the
experimental
category

Number of
the
experiment
within the
category Example file name

Unique identifier
(further
differentiation
possible to label
material)

01 IHC – brain 01 01.01 effect of
treatment X

01.01

02 01.02 confirmatory
experiment for 01.01

01.02

… … …

02 SH-SY5Y 01 02.01 titration of
rapamycin to test fibre
length

02.01

02 02.02 analysis of gene
expression after
treatment Y

02.02

… … …

03 Primary
cortical cells

01 03.01 Western blot
analysis to determine
expression of proteins
after treatment G

03.01

02 03.02 pull-down assay
of X to test interaction
with Y

03.02

… … …

04 … … … …
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This was found to be especially useful for samples that might need to be analysed
again, e.g. cell lysates which were immunoblotted a second time half a year later for
staining with a different antibody. To achieve this level of organization, the tubes
only need to be labelled with one number consisting of a few digits. To take an
example from Table 4, six tubes were labelled with the Study-ID (03.01) plus an
additional number differentiating the tube (e.g. 03.01.1 to 03.01.6). This approach
clearly identified the lysates from experiment 03.01 which is the lysates of primary
cortical cells treated with substance “G” under six different sets of conditions. If such
a labelling system is used for all experimental materials in the lab, it will ensure that
each item can be unambiguously identified.

This unique identifier should be used for all files created on every device during
experiments. In case this type of system is adopted by several researchers in a
research unit, another prefix, e.g. initials, or dedicated folders for each researcher
have to be created to avoid confusion. The system can be adopted for the organiza-
tion of the folders housing all the different experiments. To more easily understand
the entire content of an experiment, there should be a master file in each folder
providing the essential information on the experiment. This master file can be a text
file which is always built from the same template and contains the most important
information about an experiment. Templates of this type are easy to create, and they
can simplify lab work, providing an advantage for eLNs over the pLN. The template
for the master file should contain at least the following sections or links to locations
for retrieving the information:

(a) Header with unique ID
(b) Name of the researcher
(c) Date
(d) Project
(e) Aim of the experiment
(f) Reagents and materials
(g) Experimental procedure
(h) Name or pathway to the storage folder of raw data (if different to the parent

folder)
(i) Results
(j) Analysis
(k) Conclusions
(l) References

The master file should be saved in PDF format and should be time-stamped to
properly document its time of creation. The usage of a master file requires agreement
by the organization, perseverance from the researcher and control mechanisms.
Depending on the organization and the methods applied regularly, written standard
operating procedures (SOPs) can ensure a common level of experimental quality.
These files can be easily copied into the master file, and only potential deviations
need to be documented. It is recommended to back up or archive the complete
experimental folder. How this can be achieved depends on the infrastructure of the
facility. One possibility would be that the files are archived for every researcher and
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year or only if researchers leave the lab. This creates a lot of flexibility and makes
searching for certain experiments much more convenient than in a pLN. This type of
simple electronic organization combines the advantage of a pLN and an eLN: All
electronic files can be stored in one place or directly linked, and it is electronically
searchable, thus increasing transparency without the association of any additional
costs.

Well-structured scientific data can be more easily transferred to an eLN, and even
changes in the eLN system will not have a devastating effect on original file
organization. Based on the requirements for data documentation, we suggest the
following steps to a better data documentation policy that ultimately will improve
data reproducibility:

1. Identify the best system for your needs:
There are different means by which data can be documented within a lab
environment. Identifying the best approach for the specific requirements in a
lab saves time and resources by optimizing workflows.

2. Structure your data:
Well-structured data increases the possibility to find and retrieve the information.
Using a unique Study-ID is a good step towards achieving this.

3. Structure the data sources and storage locations:
Organizing data-storage locations, connecting them to experimental documenta-
tion and considering backup solutions are important for transparency.

4. Agree to and follow your rules:
Agree on minimal operational standards in the research unit that fulfil the long-
term needs, e.g. adherence to ALCOA, design and documentation of experiments
or IP ownership regulations.

5. Revise your data strategy and search for improvements:
Search for tools that allow for better connectivity and simplify documentation.

In summary, documentation is the centrepiece for best research practices and has
to be properly performed to create transparency and ensure data integrity. The
adoption of eLNs along with the establishment of routinely applied habits will
facilitate this best practice. The researchers themselves have to invest time and
resources to identify the appropriate tool for their research unit by testing different
vendors. Once the right tool is identified, only regular training and permanent
encouragement will ensure a sustainable documentation practice.
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Abstract
While research data has become integral to the scholarly endeavour, a number of
challenges hinder its development, management and dissemination. This chapter
follows the life cycle of research data, by considering aspects ranging from
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storage and preservation to sharing and legal factors. While it provides a wide
overview of the current ecosystem, it also pinpoints the elements comprising the
modern research sharing practices such as metadata creation, the FAIR principles,
identifiers, Creative Commons licencing and the various repository options.
Furthermore, the chapter discusses the mandates and regulations that influence
data sharing and the possible technological means of overcoming their complex-
ity, such as blockchain systems.

Keywords
Blockchain · FAIR · Identifier · Licence · Metadata · Preservation · Repository ·
Reproducibility · Storage

1 Introduction

The evolution of scientific research has been recently shaped by the so-called
reproducibility crisis, a phenomenon brought to light by a number of studies that
failed to replicate previous results (see, e.g. Eklund et al. 2016; Phillips 2017). This
highlighted the necessity of making available the research data underlying studies
published in more traditional mediums, such as journals, articles and conference
papers, practice which was promptly mandated by both funding bodies (European
Commission 2017; National Institutes of Health 2018) and the publishing industry
(Elsevier 2018; Springer Nature 2018).

This has left the main actors of scholarly communication, researchers, in an
interesting but also possibly difficult position. While the necessity of making data
available, especially when it is generated by publicly funded research or it presents
high-impact consequences, is uncontested, a number of challenges remain as neither
the technical, legal or societal environments were fully prepared for this prospect.

In a 2017 study across Springer Nature and Wiley authors, less than half of the
respondents reported sharing research data frequently, with more than 30% rarely or
never sharing (Digital Science 2017). Various reasons for the lack of sharing have
been identified, ranging from the lack of experience, technical knowledge or time, to
fear of shaming (in case errors are discovered in the published dataset), or competi-
tion to published results (Federer et al. 2015; Youngseek and Zhang 2015). While
the latter are more difficult to overcome, requiring profound changes across the
whole scholarly communication spectrum, the more practical aspects can be solved
by either technical means or specialised guidance.

This chapter attempts to provide a high level overview of all components
encompassing research data sharing while detailing some of the more important
aspects, such as storage, metadata, or data anonymisation.
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2 Data Storage Systems

While data storage has a history closely linked to that of computing, research
data presents a handful of new and unique challenges, especially when it comes
to persistence and privacy. Usually most technical details will be handled by
specialised professionals, but gathering a basic understanding of the inner workings,
advantages and limitations of the various options can help devise data management
plans customised to the needs of each research project, community or subject area.

2.1 Types of Storage

The first aspects of storage that need to be considered are the actual medium and
employed technology; currently, the most prevalent options are:

• Magnetic (hard disk drives (HDD), magnetic tapes): data is stored using the
magnetization patterns of a special surface.

• Optical (compact disks, Blu-ray): data is stored in deformities on a circular
surface which can be read when being illuminated by a laser diode.

• Semiconductor: data is stored using semiconductor-based integrated circuits.
While traditionally this type of technology was used for volatile storage (data is
lost if electric power is not supplied, as opposed to magnetic or optical storage),
so-called solid-state drives (SSD) are now included in consumer computers,
offering a non-volatile option with superior access speeds to their magnetic
counterparts.

When considering these options, various aspects need to be accounted for, such as
convenience, costs and reliability. For example, while tape drives tend to be cheaper
than hard disks (a 2016 analysis determined that 1 gigabyte of tape storage costed
$0.02 opposed to $0.033 for HDD (Coughlin 2016)), they also exhibit slow data
retrieval rates and require specialised hardware.

Reliability is one of the most important aspects when considering scientific data,
as loss of information can lead to delays or even experiment failures. While in the
early days of solid-state drives these encountered higher failure rates than HDD
counterparts, a 2016 study puts them at comparable or even lower rates; under 2% of
SSDs fail in their first usage year (Schroeder et al. 2016). Reliability can also be
determined by brand and models; Klein (2017) determined an average 1.94% annual
failure rate, but with a maximum at over 14% for a certain model. As no technology
can offer absolute guarantees regarding reliability, other protection mechanisms,
such as backups, need to be considered, these being discussed in the next section.
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2.2 Features of Storage Systems

Most often the underlying technology for storing data can be of less relevance for the
scholarly and scientific pursuit, but other characteristics can play an important role
when choosing a solution.

The location of the data storage is the first considered aspect. Storing data on a
local machine is advantageous as it allows the researcher to quickly access it, but
might place obstacles when attempting to share it with a larger team, and also
requires that the owner of the machine is fully responsible for its preservation.

Storage facilities managed at the institutional level, such as storage area network
(SAN) systems, move the burden of managing data storage from the individual
researcher to specialised personnel, providing higher reliability and enhanced
possibilities for sharing data among peers.

Finally, data can be stored off-site in specialised facilities; this model became
prominent with the advent of cloud systems, such as Amazon Web Services,
Microsoft Azure or Google Cloud Platform, and has benefits in terms of reliability,
scalability and accessibility. This might be preferred when the individual researcher
or institution does not possess the required resources for managing a storage
solution, when large quantities of data need to be stored, or when data needs to be
shared across a large network of collaborators. At the same time, the privacy and
legal implications need to be considered, given that a third party usually handles the
storage; for a more in-depth discussion on this, see Sect. 4. It is worth noting that
cloud deployments can also be managed by governmental bodies or similar official
entities, this alleviating some of the legal issues (for example, the Australian
National Research Data Storage Services provides such facilities to researchers in
Australia, including storage of sensitive data, such as clinical trial sets (Australian
Research Data Commons 2018)).

From a technical point of view, the choice of a storage solution needs to account
for the following:

• Redundancy: as noted previously, no storage system can be guaranteed to
function without faults and thus it is important that data is copied and stored on
different systems simultaneously. The higher the number of copies and the
broader their distribution, the higher the guarantee for their persistence is.

• Persistence and preservation: simply having data stored on a medium does not
provide guarantees that, over time, it would not become inaccessible. For exam-
ple, both tape drives and hard disks can become demagnetised, hence corrupting
the stored data. This phenomenon is frequently described as bit rot. Hence, data
needs to be periodically tested and, if problems arise, fixed. A common method
for detecting issues employs so-called checksums, fingerprints of data files which
change when even 1 byte switches value. If a file is detected to have changed, it is
usually replaced with a redundant copy.
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• Transformation: as technology evolves, so do the methods for storing data, this
also leading to deprecation; for example, floppy disks are rarely used nowadays,
despite being ubiquitous just a few years back. Storage and archival systems need
to account for this and migrate data to current technological requirements, while
ensuring that its contents are not semantically modified.

Of course, the emphasis on each of these requirements depends on the
characteristics of the underlying data; for example, for raw data the transformation
aspect might be less relevant, as that is not the final considered form of the data, but
redundancy could play a more important role due to its sole existence as a research
artefact.

2.3 Data File Formats

The file formats and even the structure and organisation of research data will most
often be enforced by various laboratory instruments and software used for producing
it. Nevertheless, it might be beneficial to apply transformations to the raw outputs in
order to ensure their persistence over time, their ease of use, and the possibility for
others to work with them.

While no silver bullet exists for file formats, a number of considerations can help
choosing the right option. A first question regards the choice between proprietary
and open-source file formats. Proprietary formats place a barrier for other
collaborators that need to access the data file, as they might require special software
or even hardware licences in order to read and modify these; for example, the
Microsoft Office formats for storing tabular data (Excel files such as XLS and
XLSX) can be opened only by certain applications, while comma-separated value
(CSV) files can be manipulated by any text editor.

Another point to consider regards the standardisation of formats; file formats
which are backed up by an established standard provide higher guarantees in terms
of accessibility and preservation over time, as clear rules on how data is encapsulated
and structured are defined. For example, the Digital Imaging and Communications in
Medicine (DICOM) format is the de facto method for storing and transmitting
medical information; using it guarantees that any systems that implements the
standard can fully read the data files. Similarly, the Clinical Data Interchange
Standards Consortium (CDISC) (2018) has developed a number of standards
encompassing the whole research workflow, such as the Clinical Data Acquisition
Standards Harmonization (CDASH), which establishes data collection procedures,
or the Study Data Tabulation Model (STDM), a standard for clinical data
organisation and formatting. As a counterexample, the CSV format does not have
complete standards behind it, and thus, particularities can arise at both the structural
and semantic levels.

Finally, the effects on the research life cycle need to be considered. Producing
the data files is most often only the first step in the research workflow. Data files
will need to be processed, shared with peers and even published alongside more
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traditional outputs, such as journal articles. While it is highly improbable that data
will maintain the same format along the whole cycle (published data rarely includes
the whole initial raw dataset), informed choices can aid the process.

2.4 Dataset Structure and Organisation

Another important aspect regards the organisation and splitting of datasets. While a
single file might seem a simpler method for storing a dataset, issues will arise when it
grows in size, and it needs to be processed or transferred to other systems. Similarly,
a large number of files can pose issues with navigating and understanding the
structure; making a choice needs again to be an informed process.

The first point to consider is the dimension of the dataset. Large instances,
especially those exceeding 1 terabyte, might prove difficult to handle. Consider for
example the need to transfer such a large file over the network1 and the possibility
that the connection will drop during the operation; most often the transfer will need
to be restarted, wasting the effort. In such cases, splitting the dataset might prove to
be a better solution, as each smaller file can be transferred individually and indepen-
dently of the others, network issues requiring only the retransfer of unsent files. A
number of storage systems include an option for so-called chunked file transfers,
where the system automatically splits larger files in smaller blocks, allowing these to
be transferred independently and at any point in time.

In cases where a large number of files constitute a dataset, it is important to
describe the overall structure such that other applications or human users can
understand it. Traditionally, folders are used for categorising and structuring content,
but these can prove ineffective in describing the full organisation, and certain
systems might not even implement this facility. A common solution to this issue is
including separate file(s) describing the structure, usually called manifests, along
with the datasets. Preferably these would follow a standard structure and semantics,
and for this purpose standards such as BagIt2 and Metadata Encoding and Transmis-
sion Standard (METS)3 have been established. Along with the structural description,
these files can also contain technical information (e.g. checksums) that might ease
other processes along the scholarly workflow, such as preservation.

3 Metadata: Data Describing Data

Storing research data can have many purposes, from facilitating study replication to
allowing further hypotheses to be tested. Nevertheless, archiving only the data
points, with no information regarding their purpose, provenance or collection

1Even over an optical fibre network connection 1 terabyte of data will require over 1 h to transfer.
2https://tools.ietf.org/html/draft-kunze-bagit-16.
3https://www.loc.gov/standards/mets/.
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method, will exponentially decrease their value over time, as both other researchers
and the authors of the data will find impossible to reuse them without further
information about the syntax and semantics.

Metadata, data about data, is the information created, stored and shared in order
to describe objects (either physical or digital), facilitating the interaction with said
objects for obtaining knowledge (Riley 2017). Metadata can describe various aspects
of the underlying dataset, and it is often useful to split the various attributes based on
their purpose.

Descriptive metadata, such as the title, creators of the dataset or description, is
useful for allowing others to find and achieve a basic understanding of the dataset.
Often linked to this is the licencing and rightsmetadata that describes the legal ways
in which the data can be shared and reused; it includes the copyright statement, rights
holder and reuse terms.

Technicalmetadata, which most often includes information on the data files, such
as their formats and size, is useful for transferring and processing data across systems
and its general management. Preservation metadata will often enhance the technical
attributes by including information useful for ensuring that data remains accessible
and usable, such as the checksum or replica replacement events (see Sect. 2.2).
Finally, structural metadata describes the way in which data files are organised and
their formats.

Given its complexity, producing metadata can become a significant undertaking,
its complexity exceeding even that of the underlying data in certain cases. This is one
of the reasons for which the standardisation of metadata has become mandatory, this
happening at three main levels.

At the structural level, standardisation ensures that, on one hand, a minimum set
of attributes is always attached to datasets and, on the other, that enough attributes
are present for ensuring proper description of any possible artefact, no matter its
origin, subject area or geographical location. Multiple such standards have been
developed, from more succinct ones, such as the DataCite Schema4 or the Dublin
Core Metadata Element Set,5 to more extensive, such as MARC216 or the Common
European Research Information Format (CERIF).7 The usage of these standards
might vary across subject areas (e.g. the Document, Discover and Interoperate
(DDI) standard is targeted at survey data in social, behavioural and health sciences
(DDI Alliance 2018)) or the main purpose of the metadata (e.g. the METS standard
emphasises technical, preservation and structural metadata more than the DataCite
schema).

At the semantic level, the focus is on ensuring that the language used for
describing data observes a controlled variability both inside a research area and
across domains. For example, the CRediT vocabulary (CASRAI 2012) defines

4https://schema.datacite.org/meta/kernel-4.1/.
5http://dublincore.org/documents/dces/.
6https://www.loc.gov/marc/bibliographic/.
7See https://www.eurocris.org/cerif/main-features-cerif.
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various roles involved in research activities, Friend of a Friend (FOAF) establishes
the terminology for describing and linking persons, institutions and other entities
(Brickley and Miller 2014), and the Multipurpose Internet Mail Extensions (MIME)
standard defines the various file formats (Freed Innosoft and Borenstein 1996).

The third point considered from a standardisation point of view involves the
formats used for storing and transferring metadata. The Extensible Markup Lan-
guage (XML)8 is one of the most prevalent formats, almost all standards providing a
schema and guidance on employing it. The JavaScript Object Notation (JSON)9

format is also starting to gain traction, both due to its pervasiveness in web services
nowadays and also due to certain initiatives, such as schema.org which use it as the
de facto output format.

3.1 Unique and Persistent Identifiers

One important aspect of metadata, considered by most standards, vocabularies and
formats relates to the usage of identifiers. Similar to social security numbers for
humans or serial numbers for devices, when it comes to research data, the aim of
identifiers is to uniquely and persistently describe it. This has become a stringent
necessity in the age of Internet, both due to the requirement to maintain resources
accessible for periods of times of the order of years or even decades, no matter the
status or location of the system preserving them at any discrete moment,10 and also
due to the necessity of linking various resources across systems. Thus, various
elements of research data started receiving identifiers, various initiatives and
standards becoming available.

Even before the prevalence of research data sharing, bibliographic records
received identifiers, such as International Standard Book Numbers (ISBN) for
books and International Standard Serial Numbers (ISSN) for periodicals. For
research data, Archival Resource Keys (ARK) and Handles11 are more prevalent,
as these mechanisms facilitate issuing new identifiers and, thus, are more suited for
the larger volume of produced records.

The Digital Object Identifier (DOI) system12 is quickly emerging as the industry
standard; it builds upon the Handle infrastructure, but adds an additional dimension
over it, namely, persistence (DOI Foundation 2017). At a practical level, this is
implemented using a number of processes that ensure that an identified object will
remain available online (possibly only at the metadata level) even when the original

8https://www.w3.org/XML/.
9https://www.json.org/.
10Similar to bit rot, link rot describes the phenomenon of web addresses becoming unavailable over
time, for example, due to servers going offline. This can pose significant issues for research
artefacts, which need to remain available for longer periods of time due to their societal importance;
nevertheless, link rot was proven to be pervasive across scholarly resources (Sanderson et al. 2011).
11http://handle.net/.
12https://doi.org.
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holding server becomes unavailable and the resource needs to be transferred else-
where. A DOI is linked to the metadata of the object and is usually assigned when the
object becomes public. The metadata of the object can be updated at any time and,
for example, the online address where the object resides, could be updated when the
object’s location changes; so-called resolver applications are in charge of redirecting
accesses of the DOI to the actual address of the underlying object.

A second important dimension of research outputs relates to persons and
institutions. ORCiD is currently the most widespread identifier for researchers,
with over 5 million registrations (ORCID 2018), while the International Standard
Name Identifier (ISNI)13 and the Global Research Identifier Database (GRID)14

provide identifiers for research institutions, groups and funding bodies.
Identifiers have been developed for other entities of significant importance in

terms of sharing and interoperability. For example, the Protein Data Bank provides
identifiers for the proteins, nucleic acids and other complex assemblies (RCSB PDB
2018), while GenBank indexes genetic sequences using so-called accession numbers
(National Center for Biotechnology Information 2017).

Research Resource Identifiers (RRID) (FORCE11 2018) aim to cover a wider
area, providing identifiers for any type of asset used in the scientific pursuit; the
current registry includes entities ranging from organisms, cells and antibodies to
software applications, databases and even institutions. Research Resource Identifiers
have been adopted by a considerable number of publishing institutions and are
quickly converging towards a community standard.

The main takeaway here is that, it is in general better to use a standard unique and
possibly persistent identifier for describing and citing a research-related entity, as
this will ensure both its common understanding and accessibility over time.

3.2 The FAIR Principles

As outlined, producing quality metadata for research data can prove to be an
overwhelming effort, due to the wide array of choices in terms of standards and
formats, the broad target audience or the high number of requirements. To overcome
this, the community has devised the FAIR principles (Wilkinson et al. 2016), a
concise set of recommendations for scientific data management and stewardship
which focuses on the aims of metadata.

The FAIR principles are one of the first attempts to systematically address the
issues around data management and stewardship; they were formulated by a large
consortium of research individuals and organisations and are intended for both data
producers and data publishers, targeting the promotion of maximum use and reuse of
data. The acronym FAIR stands for the four properties research data should present.

13http://www.isni.org/.
14https://grid.ac.
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Findability relates to the possibility of coming across the resource using one of
the many Internet facilities. This requires that the attached metadata is rich enough
(e.g. description and keywords are crucial for this), that a persistent identifier is
associated and included in the metadata and that all this information is made publicly
available on the Internet.

Accessibility mostly considers the methods through which data can be retrieved.
As such, a standard and open protocol, like the ones used over the Internet, should be
employed. Moreover, metadata should always remain available, even when the
object ceases to be, in order to provide the continuity of the record.

Interoperability considers the ways in which data can be used, processed and
analysed across systems, both by human operators and machines. For this, metadata
should both “use a formal, accessible, shared, and broadly applicable language for
knowledge representation” (FORCE11 2015) and standardised vocabularies.15

Moreover, the interoperability guideline requires that metadata contains qualified
references to other metadata. This links both the persistent and unique identifiers
described earlier, but also to the relations between them, the foundation of Linked
Data, a concept introduced by the inventor of the World Wide Web, Tim Berners-
Lee. This concept relies heavily on the Resource Description Framework (RDF)
specification which allows describing a graph linking pieces of information (W3C
RDF Working Group 2014). The linked data concept is of utmost importance to the
scholarly workflow, as it can provide a wider image over scientific research, as
proven by projects such as SciGraph, which defines over one billion relationships
between entities such as journals, institutions, funders or clinical trials (Springer
Nature 2017), or SCHOLIX16 which links research data to the outputs that
reference it.

Finally, the FAIR principles mandate that research data should be reusable, thus
allowing for study replicability and reproducibility. For this, it requires that metadata
contains accurate and relevant attributes (e.g. it describes the columns of tabular
data) and information about its provenance. Moreover, it touches on certain legal
aspects, such as the need for clear and accessible licencing and adherence to
“domain-relevant community standards”, such as, for example, the requirements
on patient data protection.

4 Legal Aspects of Data Storage

There are a number of legal aspects to consider regarding the storage and sharing of
research data; certain elements will differ depending on the geographic location.
This section outlines the main points to consider.

15Here the principles become recursive, mandating that vocabularies describing FAIR datasets
should themselves follow the same principles, see FORCE11 (2015).
16https://scholix.org.
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4.1 Anonymisation of Research Data

Broadly, anonymisation allows data to be shared while preserving privacy. Ano-
nymity is not be confused with confidentiality, although the two are linked.
Anonymity is the process of not disclosing the identity of a research participant or
the author of a particular view or opinion. Confidentiality is the process of not
disclosing to other parties opinions or information gathered in the research process
(Clark 2006).

The process of anonymising research data requires that key identifiers are
changed or masked. An individual’s identity can be disclosed from direct identifiers
such as names or geographic information or indirect identifiers which, when linked
with other available data, could identify someone, like occupation or age.
Anonymisation should be planned in the early stages of research, or costs can
become burdensome later. Anonymisation considerations should be built in when
gaining consent for data sharing.

One of the challenges of anonymisation is balance. Going too far could result in
important information being missed or incorrect conclusions being drawn, all the
while balancing the potential of reidentification. If the research data is for public
release, the probability of potential reidentification needs to be low. It may be
acceptable for this probability to be higher for private or semi-public as other
controls can be put in place (El Emam et al. 2015).

For example, in the USA the Health Insurance Portability and Accountability Act
of 1996 (HIPAA) directly addresses anonymisation concerns (U.S. Department of
Health and Human Services 2017); it requires that systems and repositories that
handle such information need to ensure physical, technical and administrative
safeguards that meet the obligations laid out in the Act.

4.2 Legal Frameworks to Consider

As mentioned earlier, the legal frameworks that need to be considered will vary
dependent on geography. Three important frameworks to consider are the General
Data Protection Regulation (GDPR)17 in the EU, the UK Data Protection Act 1998/
201818 and the Patriot ACT in the USA.19

The EU General Data Protection Regulation (GDPR) along with the new UK
Data Protection Act came into force on May 25, 2018, and governs the processing
(holding or using) of personal data in the UK. Although not specifically aimed at
research, some changes will still need to be considered. GDPR has a clearer defini-
tion of personal data which is that personal data is about living people from which

17https://www.eugdpr.org/.
18https://www.gov.uk/government/collections/data-protection-act-2018.
19https://www.justice.gov/archive/ll/highlights.htm.
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they can be identified. As well as data containing obvious identifiers, such as name
and date of birth, this includes some genetic, biometric and online data if unique to
an individual. Data that has been pseudonymised (with identifiers separated), where
the dataset and identifiers are held by the same organisation, is still personal data.

The UK Data Protection Act 1998 and its update in 2018 applies in Scotland,
England, Wales and Northern Ireland. The Act gives individuals rights of access to
request copies of their personal data collected by a researcher. It requires that any
processors of personal data must comply with eight principles, which make sure that
personal data are:

1. Fairly and lawfully processed
2. Processed for limited purposes
3. Adequate, relevant and not excessive
4. Accurate and up to date
5. Not kept for longer than is necessary
6. Processed in line with your rights
7. Secure
8. Not transferred to other countries without adequate protection

There are exceptions for personal data collected as part of research. It can be
retained indefinitely if needed and can be used for other purposes in some
circumstances. People should still be informed if the above applies.

Sensitive data also falls under UK Data Protection rules. Sensitive data includes
but is not limited to race or ethnic origin, political opinion, religious beliefs or
physical or mental health. Sensitive data can only be processed for research purposes
if explicit consent (ideally in writing) has been obtained, the data is in substantial
public interest and not causing substantial damage and distress, or if the analysis of
racial/ethnic origins is for purpose of equal opportunities monitoring.

The legal definition of personal data is complex and is affected by the act’s
subsequent update in 2018 and GDPR, but the simplest and safest definition is of any
information about a living, identifiable individual. This is relevant to anonymisation,
as if research data is appropriately anonymised, then the UK Data Protection act will
no longer apply. Institutions generally have a Data Protection Officer which should
be utilised to address any specific concerns about research outputs.

The PATRIOT Act was signed into law in the USA in 2001. This legislation,
again, not specifically aimed at research, has impact when it comes to data storage
and grants the potential for the US government to have access to data stored by US
cloud servers providers. A common misconception is that avoidance of US-located
servers solves the problem, which is only partially accurate. This act would, in
theory, allow US judicial authorities and intelligence agencies to request data stored
in cloud services outside of the USA. The police, the judiciary and intelligence
agencies are able in one way or another to request information from higher education
and research institutions and any other parties concerned (van Hoboken et al. 2012).

From a legal perspective, access to cloud data cannot be denied and “cloud
service providers can give no guarantees in this respect” (van Hoboken et al.
2012). In practice, access can take place in one of two ways:
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• If the cloud service provider is subject to US jurisdiction, a request for release of
the data can be made directly to the service provider company in the USA.

• If the cloud service provider is not subject to US jurisdiction, data may be
retrieved from the service provider or the institution or with the assistance of
relevant local judicial authorities or intelligence agencies.

4.3 Licencing

As is the case with any type of scientific output, research data requires a framework
upon which sharing, along with proper attribution, can be achieved. What sets data
apart from say, journal papers, is that it can be reused in more ways and such
copyright protocols suited for citing research can prove insufficient when consider-
ing, for example, the extraction of new hypothesis from existing datasets. This is
why new means of licencing and enforcing copyright have either been devised or
borrowed from other domains where reuse is common. When data is shared, the
original copyright owner usually retains the copyright (UK Data Service 2012), but a
licence can be applied in order to describe how the data can be reused. It is important
to note that when no proper licencing terms are applied, content cannot be
redistributed or reused (Brock 2018).

The Creative Commons (CC) suite of licencing options20 is one of the most
popular for research data; the model consists of a modular set of clauses which can
be aggregated for obtaining licences with varying degrees of freedom in terms of
reuse. As such, the CC BY licence allows unrestricted reuse as long as attribution is
given to the original authors, while more restrictive options such as CC BY-NC-SA
or CC BY-NC-ND disallow either using a different licence for derivative work (SA,
share-alike) or no derivatives (ND) at all, respectively, with a supplementary clause
forbidding the usage of the data for any commercial interest (NC, no commercial).

Apart from these, other licencing options have been devised for more specific use
cases. For example, research software can use one of the deeds commonly employed
across the software development ecosystem, such as the MIT licence21 or the GNU
General Public License (GPL).22 Another example relates to licences developed by
national bodies, in order to ensure better compliance with the regional laws and
regulations; such instances include the European Union Public License (EUPL)23 or
the Open Government License (OGL).24 Finally, data can be placed in the public
domain, forgoing any copyright or reuse terms; such content can be associated with a
notice such as the one provided by Creative Commons as CC0.25

20https://creativecommons.org/.
21https://opensource.org/licenses/MIT.
22https://www.gnu.org/licenses/gpl-3.0.en.html.
23https://joinup.ec.europa.eu/collection/eupl.
24http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/.
25https://creativecommons.org/share-your-work/public-domain/cc0/.
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While in general researchers should aim for allowing unrestricted use of their
data, as also stipulated by the FAIR principles, this is of course not always possible
or desirable due to various ethical, regulatory or even technical reasons. In such
cases, consulting with personnel specialised in licencing and copyright issues, such
as a librarian or lawyer, might be desirable, in order to avoid issues with certain
deeds that might place undesirable obstacles on reuse. For example, the no commer-
cial (NC) clause in the CC suite can disallow the use of data not only by commercial
corporations but also by research institutions generating minimal amounts of reve-
nue (Klimpel 2013).

4.4 Blockchain: A Technical Solution for Legal Requirements

As the legal requirements around the research area become more complex, technical
solutions for alleviating them are currently being researched. The aim of these is to
simplify the workflows and maintain a low entry point for users lacking legal
expertise while also ensuring the required level of compliance.

In recent years, the blockchain technology has been examined as a potential mean
of solving some of these issues, the movement in this direction being fuelled by the
increase in interest due to usage in the financial domain (e.g. Bitcoin). At a very high
level, the blockchain allows recording data and verifying its authenticity without the
need for a central authority. In the most popular implementations, each participant in
a blockchain holds a copy of the whole record set, and each record is linked to a
previous one by a cryptographic value, distilled using the records’ content; thus,
even the most trivial change would propagate across the whole chain, signalling the
modification.

The basic idea behind blockchains can prove useful in areas where authenticity,
provenance and anonymization are important, research being one of them. In Digital
Science and van Rossum (2017), the authors have identified a number of ways in
which blockchains could be implemented across the scholarly workflow, such as:

• Hypothesis registration: allow researchers to signal a discovery, proof or new
dataset while providing evidence of ownership in any future instance.

• Study preregistration: while committing research plans before executing them is
already a practice (see, e.g. the “Preregistration Challenge”26), it can be difficult
to ensure that these plans are not modified while the experiments are ongoing, in
order to mask potential discrepancies with the actual results; a blockchain system
could easily detect such a change.

• Digital rights management: a blockchain system can easily record ownership, and
a related technology, smart contracts, a system for defining, actioning and
enforcing a set of clauses, can be used to ensure that future usage of data respects
and attributes ownership along with any associated stipulations (Panescu and

26https://cos.io/prereg/.
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Manta 2018). This could prove useful also in terms of counting citations and
understanding how data is further reused.

• Data anonymisation and provenance: this can prove to be of utmost importance
for medical and pharmacological research, where, on one hand, stringent
requirements on patient privacy and data anonymisation are in place, and, on
the other hand, the origin of the data should be verifiable. The use of crypto-
graphic controls and the distributed architecture of blockchain systems can help
with these challenges.

The application of blockchain technology to various real-world problems is still
in its infancy, with many challenges still to overcome. Nevertheless this space is one
to closely follow, as it can provide glimpses onto the future of research data sharing.

5 Overview of Research Data Repositories and Tools

What data sharing means is rarely explicitly defined. Questions arise such as:

• How raw should the data be?
• Where and how should data be shared?
• How should data be standardised and structured to make it useful?

To complicate matters, these answers will differ dependent on the particular
discipline of the person asking the question. Successes in this area like the sharing
of DNA sequences via Genbank (National Center for Biotechnology Information
2017) and functional magnetic resonance imaging (fMRI) scans via the Human
Connectome Project27 are research outputs that lend themselves to standardisation.
These successes may be difficult to replicate in other disciplines.

Pharmacology presents some particular challenges to data sharing, with common
research outputs like raw traces of electrophysiological measurements and large
imaging files potentially too unwieldy for existing solutions. For this very reason,
The British Journal of Pharmacology (BJP) has a recommended but not mandated
policy of data sharing (George et al. 2017).

Look at the wider world of repositories for research data, there are many available
options. This section will look at some of the reasons to share research data and how
this may influence the discovery path to choosing a repository for publication. It will
also look at some of the key features to consider which will have different levels of
importance dependent on usage requirements.

There are a number of other considerations to take into account when looking at
where to share research data outside of a feature analysis only. There are a variety of
certifications to look at, starting with the Data Seal of Approval/CoreTrustSeal.
CoreTrustSeal is a non-profit whose stated aim is to promote sustainable and

27http://www.humanconnectomeproject.org/.
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trustworthy data infrastructures. The 16 questions asked on assessment are an
excellent set of questions to think about when deciding where and how to store
data (Data Seal of Approval, ICSU World Data System 2016).

Additional certifications to look out for are the Nestor seal28 and ISO1636329;
their aim is to provide stricter guidelines concerning the processes data repositories
should follow in order to ensure higher guarantees in terms of data and metadata
preservation and accessibility.

5.1 Repositories

As alluded to earlier, there are more general repositories for data sharing and
numerous very specific repositories. Dependent on the reasons for data sharing,
there are numerous methods to choosing where and how to share data. A good
starting point are tools such as FAIRsharing30 from the University of Oxford
e-Research centre which has additional resources outside of repositories including
data policies and standards, and r3data,31 an extensive index which can be browsed
by subject and country.

Publisher mandates are one of the most common cases for data sharing when
publishing an article. Some journals require and others may only recommend that
data behind the paper is shared alongside publication. In these instances, the journal
will often have a list of approved repositories that they either directly work and
integrate with or simply recommend. Examples can be found from Nature (2018,
Recommended Repositories) and Elsevier (2018, Link with data repositories).

Funder mandates are an ever-increasing force (Digital Science 2017) in open
research data sharing, with some funders opting for a policy that all research data
that can be shared must be. In certain cases, funders will have even more
stringent requirements, demanding so-called data management plans (Netherlands
Organisation for Scientific Research 2015), which detail the whole life cycle of
research data, from collection to publication.

Research data sharing in life sciences is commonly scrutinised in terms of
adherence to the ALCOA principles, a series of guidelines adopted by a number of
large funding and regulatory institutions such as the US Food and Drug Administra-
tion, National Institutes of Health or the World Health Organisation. These
principles establish a number of properties quality data and, by transitivity, the
systems generating, processing and holding it should exhibit:

• Attributable: the generator of the data should be clearly identified.
• Legible: records should remain readable, especially by human users, over time.

28http://www.dnb.de/Subsites/nestor/EN/Siegel/siegel.html.
29https://www.iso.org/standard/56510.html.
30https://fairsharing.org/.
31https://doi.org/10.17616/R3D.
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• Contemporaneous: data points should be recorded as near as possible to the event
that generated them, thus avoiding any loss of information.

• Original: analyses should be performed using the initially collected data, or a
strictly controlled copy, to avoid, for example, errors generated from the tran-
scription of handwritten data to an electronic record.

• Accurate: data should be complete, correct and truthful of the event being
recorded.

• Complete32: data should not be deleted at any point.
• Consistent: research data should be recorded in a chronological manner.
• Enduring: research data should be preserved for an extended period of time.
• Available: research data should remain accessible for the lifetime of either the

final research artefact (e.g. research paper) or physical product (e.g. a drug).

Of course, data may be shared outside of any mandate to do so. This may be to
contribute to the increasing success and importance of Open Science movement
(Ali-Khan et al. 2018), increase the visibility and reach of the work or to safely
ensure the long-term availability of the data or myriad other reasons. In this situation,
the wider world of repositories is available. One of the first decisions would be to
choose whether to opt for a subject-specific repository or one of the more general
repositories available.

Subject-specific repositories have the advantage of potentially having functional-
ity and metadata schemas directly related to your field as well as the advantage of
having a targeted audience of potential viewers. Examples of these include:

• Clinical Trials33 is a database of privately and publicly funded clinical studies
conducted around the world.

• The SICAS Medical Image Repository34 host medical research data and images.
• The TCIA35 is a service which de-identifies and hosts a large archive of medical

images of cancer accessible for public download.

While there are numerous comparisons of generalist data repositories available
(see Amorim et al. 2015; Stockholm University Library 2018; Dataverse Project
2017), the rapid pace of development seen on these platforms can mean these are
difficult to maintain, and thus repositories should be evaluated at the time of use.

Figshare36 was launched in January 2011 and hosts millions of outputs from
across the research spectrum. It is free to use, upload and access. It has a number of
different methods of framing data from single items to themed collections. Figshare

32The last four points correspond to a later addition to the ALCOA principles, ALCOA Plus.
33https://clinicaltrials.gov.
34https://www.smir.ch.
35http://www.cancerimagingarchive.net.
36https://figshare.com/.
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features a range of file visualisation options which may be attractive dependent on
the particular files used.

Zenodo37 was launched in March 2013 is non-profit general repository from
OpenAIRE and CERN. It is free to use and access. It is a mature, well-featured
product and of particular interest may be the Communities functionality. These
curated groups allow for elements of subject-specific repositories to be catered for.

DataDryad38 was launched in January 2008 and is a non-profit repository which
is more tied to the traditional publication process. While all types of data are
accepted, they must be linked to a published or to-be-published paper. Outputs on
DataDryad are free to download and reuse; uploads incur a submission fee as
opposed to the examples above. There are significant integrations with journals,
and this option is worth considering if this is of significant importance.

Other options to consider are institutional or national data repositories. Data
repositories at institutions are becoming increasingly prevalent and should be
investigated as either the sole method of publication or as reference record to the
destination of choosing. Examples of these include:

• Cambridge University Data Repository39

• Sheffield University Data Repository40

• Monash University Data Repository41

National and even international repositories are again an area that is still in its
infancy but are under active development in many countries around the world.
Examples of these include:

• The Norwegian Centre for Research Data42

• The UK Data Service43

• Swedish National Data Service44

• European Open Science Cloud (EOSC)45

The repository chosen should be one that works well with FAIR principles
outlined previously. While there are many factors to consider that will have different
weightings dependent on use, some good general areas to consider include:

37https://zenodo.org/.
38https://datadryad.org.
39https://www.repository.cam.ac.uk.
40https://www.sheffield.ac.uk/library/rdm/orda.
41https://monash.figshare.com/.
42http://www.nsd.uib.no/nsd/english/index.html.
43https://www.ukdataservice.ac.uk.
44https://snd.gu.se/en.
45https://www.eoscpilot.eu/.
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• Embargo and access options: does the repository allow the ability to grant
different levels of access conditions to the files and/or metadata? Can data be
shared privately? Can the files, metadata or both be embargoed?

• Licences: does the repository provide access to the necessary licence options
needed for publication of the data? Can you add your own licence?

• Metrics and citations: what type of metrics does the repository track? Do they
report the metrics to any tracking bodies? Do they track citations of the data? Do
they track nontraditional online attention, e.g. altmetrics?

• Availability: what is the sustainability model of the repository? What guarantees
do they provide about the continued availability of the data? Is the data easily
accessible programmatically to allow for ease of export?
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Abstract
Any given research claim can be made with a degree of confidence that a phenom-
enon is present, with an estimate of the precision of the observed effects and a
prediction of the extent to which the findings might hold true under different
experimental or real-world conditions. In some situations, the certainty and preci-
sion obtained from a single study are sufficient reliably to inform future research
decisions. However, in other situations greater certainty is required. This might be
the case where a substantial research investment is planned, a pivotal claim is to be
made or the launch of a clinical trial programme is being considered. Under these
circumstances, some form of summary of findings across studies may be helpful.

Summary estimates can describe findings from exploratory (observational) or
hypothesis testing experiments, but importantly, the creation of such summaries
is, in itself, observational rather than experimental research. The process is
therefore particularly at risk from selective identification of literature to be
included, and this can be addressed using systematic search strategies and
pre-specified criteria for inclusion and exclusion against which possible
contributing data will be assessed. This characterises a systematic review
(in contrast to nonsystematic or narrative reviews). In meta-analysis, there is an
attempt to provide a quantitative summary of such research findings.
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1 Principles of Systematic Review

1. Search strategy: the objective is to identify all possible sources of relevant
information, so that they can contribute to the research summary. Informal
searches have a number of weaknesses:
(a) There is a risk of the preferential identification of work in high-impact

journals. We know that the quality of work published in such journals is no
higher than that in the rest of the literature and that a premium on novelty
means that the findings in such journals tend to be more extreme than in other
journals. This has been shown, for instance, in gene association studies in
psychiatry (Munafo et al. 2009).

(b) While English is still, largely, the language of science, searches which are
limited to the English language literature will miss those studies published in
other languages. For research conducted in countries where English is not the
first language, there is likely to be a difference in the “newsworthiness” of
work published in the English literature compared with the domestic litera-
ture, with work published in English being unrepresentative of the whole.

(c) Where there is not a clear articulation of inclusion and exclusion criteria, de
facto judgements may be made about eligibility based on convenience or
information source, and eligibility criteria may drift with emerging under-
standing of the literature. This is essentially a data-led approach, and while it
is sometimes appropriate, it needs to be apparent.

(d) There should be articulation in advance of the research types to be included.
Should conference abstracts be considered? In spite of their brevity, they do
sometimes include sufficient information to contribute outcome data to meta-
analysis. There is an increasing pre-peer-reviewed literature, most notably
bioRxiv, often described in as much detail as a formal journal paper.
Reviewers should decide this in advance, and in general in fast-moving
fields, it is preferable to consider both of these sources if possible.

(e) This decision also has implications for the number of databases to be
searched. PubMed is easy to use, is widely accessible and provides good
coverage of much of the published literature. However, conference abstracts
and preprints are not reliably retrieved, and if these are important, then the
use of, for instance, EMBASE and Google Scholar, or perhaps direct
searching within bioRxiv, is preferred. Importantly, the Google Scholar
algorithm is based in part on that user’s search history and will differ between
individuals. Therefore, while potentially useful, it does not provide a repro-
ducible search strategy and should not be used as the main or only search
engine. As registries of animal experiments become more widely used,
searching of these may provide useful information about the proportion
of studies which have been initiated but not (at least not yet) published.
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The SRA-polyglot tool (http://crebp-sra.com/#/polyglot) developed by the
Bond University Centre for Research in Evidence-Based Practice allows the
syntax of search strings to be converted between the requirements of several
different databases.

2. Deduplication
(a) Where more than one database is searched, it is inevitable that some articles

will appear in more than one search result, and it is important to identify such
duplication. The earliest this can be done, the more work is saved; and in
some large multi-author reviews, duplicate publications may persist to very
late stages of the review. Bibliographic software such as EndNote has
deduplication facilities which require manual curation, as does the
SRA-dedupe tool developed by the Bond University Centre for Research in
Evidence-Based Practice. However, emerging experience in our group
suggests that completely automated deduplication may be achieved with a
high degree of precision using the RecordLinkage (https://cran.r-project.org/
web/packages/RecordLinkage/index.html) R package with additional filters
built into the code to maximise the number of duplicates detected without
removing false duplicate records.

3. Protocol registration (PROSPERO) and publication
(a) Systematic review is observational research. There is opportunity therefore

for hypothesising after results are known (“HARKing”) – that is, for the
intention of the study to be changed in the light of observed data, with a claim
made, the data supported what the investigators had been looking for all
along, and for flexibility in data analysis (choosing the analysis technique
that delivers p < 0.05), and for shifts in the entire purpose of the study. Say,
for example, we were interested in the effect of maternal deprivation in the
first trimester on blood pressure in adult offspring, but found many more
studies using maternal deprivation in the third trimester and switched to
studying that. These flexibilities increase the risk of identifying spurious
associations and devalue the findings of systematic review. Researchers
should articulate, in advance, the population to be studied, the hypothesis,
the intervention of interest, the statistical analysis plan and the primary
outcome measure. These should be recorded in a registry such as PROS-
PERO, which has a dedicated platform for reviews of animal studies (https://
www.crd.york.ac.uk/prospero/#guidancenotes_animals).

(b) For more complex reviews, it may be worth considering publication of a
protocol manuscript, giving the opportunity to articulate in greater detail the
background to the study and the approach to be used; and some journals have
adopted the Registered Reports format, where the protocol is reviewed for
methodological quality, with an undertaking to accept the final manuscript
regardless of results, as long as the methodology described in the protocol
has been followed (see https://cos.io/rr for further discussion).

4. Ensuring reviews are up to date
(a) Depending on the resources available, systematic reviews may take as much

as 2 years to complete. Given the pace of scientific publication, this means
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that the findings may be out of date before the review is even published. One
approach is to update the search once data extraction from the originally
identified studies is complete, but this should be performed before any data
analysis, and the intention to update the search, perhaps conditional on the
original search being above a certain age, should be articulated in a study
protocol.

(b) An alternative approach is to conduct a living systematic review (Elliott et al.
2017). In this the intention is that the review is continually updated as new
information becomes available. Automation of many of the key steps means
that much of this can be done in the background, with little human interven-
tion required (Thomas et al. 2017). At present the critical stage which resists
automation is the extraction of outcome data, but even here the use of
machine assistance may have much to offer; a pilot study suggests time
saving of over 50% in data extraction, with gains in accuracy (Cramond
et al. 2018). It is now possible to imagine completely automated living
reviews, right through to a continually updated web-based dissemination of
review findings.

(c) Such reviews raise important issues about statistical analysis and versions of
record. For the former, the concern is that sequential statistical analysis of an
enlarging dataset raises the false discovery rate. The problem is similar to
those encountered in interim analyses in clinical trials, but because data
might continue to accumulate indefinitely, approaches such as alpha spend-
ing used in clinical trials would not be appropriate. Possible approaches
include either adopting a Bayesian approach, with priors informed by the
first formal meta-analysis, or a rationing of formal statistical testing at
milestones of data accumulation, for instance, with each doubling of the
amount of data available (Simmonds et al. 2017).

(d) For a version of record, there needs to be a persisting digital identifier, with
the possibility to recreate the data which contributed to that analysis. One
approach would be to allow research users to create a snapshot of the
analysis, with its own DOI and linked public domain data repository, with
the snapshot labelled to indicate findings from the last formal statistical
analysis and with the informal updated analysis. This would provide trans-
parency to the provenance of the claims made.

5. Machine learning for citation screening
(a) Any bibliographic search represents a compromise between sensitivity and

specificity – a highly sensitive search will identify all relevant studies and
many more which are irrelevant; and attempts to increase specificity reduce
sensitivity. For most systematic reviews, the proportion of relevant search
results is around 10–20%. For some reviews, particularly “broad and shal-
low” reviews or living reviews, the work required in screening citations can
be substantial. For instance, our search for a review of the animal modelling
of depression returned more than 70,000 “hits”, and one for the modelling of
Alzheimer’s disease returned over 260,000 “hits”. In such cases the burden of
human screening is prohibitive.
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(b) The task of identifying citations is well suited to machine learning. Essen-
tially an automated tool extracts features from the text such as word fre-
quency and topics described, determines the representation of these features
in a learning set of included versus excluded citations and makes a prediction
of the probability that any given citation should be included. This can then be
tested in a validation set and the sensitivity and specificity of various cut-off
scores determined. By varying the cut-off score, the user can choose the
levels of sensitivity and specificity which best meets their needs. Our practice
is to choose the cut-off which provides sensitivity of 95% (roughly equiva-
lent to human screening) and to observe the sensitivity achieved. If this is not
sufficient, we increase the size of the training set in an attempt to secure better
performance.

(c) There is a further elaboration to improve performance. Although the training
sets have usually been defined through dual screening (i.e. two humans have
independently adjudicated the citation, and disagreements have been
reconciled by a third screener), errors still occur. Such errors pollute the
training sets and reduce machine performance. Citations in the training set
where there is greatest mismatch between human decision and machine
prediction are those most likely to represent human errors, and so identifying
these for further human screening to identify errors leads to improved
performance – in the depression example (Bannach-Brown et al. 2019),
increasing sensitivity from 86.7% to 88.3% while achieving sensitivity of
98.7%, resulting in a reduction in the burden of screening of over 1,000
citations.

6. Text mining to partition and annotate the literature
(a) Particularly in a broad and shallow review, there is often a need to categorise

studies according to the disease model, the experimental intervention or the
outcome measure reported. In all reviews, it may be helpful to annotate
studies according to the reporting of measures – such as blinding or
randomisation – which might reduce the risk of bias. This can be done either
on title and abstract only or can consider the full text if this is available. The
basic approach is to use a dictionary-based approach, determining the fre-
quency with which a specific word or phrase appears. In our experience, this
is usually sufficient for disease model, experimental intervention and the
outcome measure reported – probably because there is a very limited number
of ways in which such details are reported. Annotation for risks of bias is
more challenging, because there are more ways in which such details can be
described. More sophisticated textual analysis using regular expressions –

where a word or phrase is detected in proximity to (or without proximity to)
other words or phrases – can be used to detect the reporting of, for instance,
blinding and randomisation, with a reasonable degree of precision (Bahor
et al. 2017). However, performance at the level of the individual publication
is not perfect, and access to full text is required. In the clinical trial literature,
tools using more sophisticated machine learning approaches have been
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described (Marshall et al. 2016), and we and others are currently exploring
the performance of similar approaches to the in vivo literature.

7. Wide and shallow reviews and narrow and deep reviews
(a) Reviews can serve diverse purposes, from the very focussed investigation of

the effect of a specific drug on a specific outcome in a specific disease model
to more broad ranging reviews of a field of research. It is usually too
burdensome for a review to be both wide and deep, but wide and shallow
reviews can serve important purposes in describing a field of research;
reporting the range of outcomes reported, drugs tested and models employed;
and reporting of risks of bias, without a detailed meta-analysis. These can be
critically important in designing future research questions, for instance, in
determining priorities for future narrow and deep reviews. Indeed, by making
available datasets from wide and shallow reviews with living searches,
machine learning for citation screening and text mining to identify drugs
and models of interest in “Curated current contents” (see below), these
reviews can be a launch pad for those wishing to conduct narrow and deep
reviews in particular areas, with much of the burden of searching and citation
screening already performed.

2 Principles of Meta-Analysis

1. Measures of effect size
(a) Usually we are interested in measuring differences in outcomes between two

or more experimental cohorts. This might be a difference in, for instance,
infarct volume in an animal model of stroke, or of cognitive performance in
animal models of dementia, or of ejection fraction in animal models of
myocardial ischaemia. It is very unusual for the outcome measure used to
function as a ratio scale across the different experimental designs presented
(a 5 mm3 reduction in infarct volume has very different meaning in a mouse
compared with a rat or a cat), and so simply taking the raw outcome measure
is seldom appropriate.

(b) Another approach is to calculate a “standardised mean difference” (SMD),
where the difference is expressed as a proportion of the pooled standard
deviation (Cohen’s D), sometimes with a correction factor to account for
small group sizes (Hedges G). If groups are large enough, the measured
pooled standard deviation reflects the underlying biological variability in the
phenomenon under study and is independent of the scale used; it can
therefore be used to convert between scales. For example, if the variation
in daily temperature recordings is 3.6�F and is also 2.0�C, then we can
establish that 1.8�F ¼ 1.0�C.

(c) However, when group size is smaller, the measured pooled standard devia-
tion reflects both underlying variability and a measurement error. In a simple
simulation of 100 control groups with 10 animals each, the observed standard
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deviation ranged from 51% to 172% of the modelled value, giving substantial
imprecision if this was used as the yardstick to scale the effect size (unpub-
lished simulation).

(d) An alternative approach is to calculate a “normalised mean difference”
(NMD) by mapping the observed outcomes onto a ratio scale where 0 is
the outcome expected from an unlesioned, normal animal and 1 is the
outcome observed in a lesioned, untreated animal (usually the control
group). The effect size can then be expressed as the proportional or percent-
age improvement in the treatment group, with a pooled standard deviation on
the same scale derived from that observed in the treatment and control
groups. So a drug that reduced infarct volume in a rat from 300 to
240 mm3 would be considered to have the same magnitude of effect as one
that reduced infarct volume in a mouse from 25 to 20 mm3.

(e) This NMD approach also has shortcomings. Firstly, although some outcome
measures such as infarct volume appear as a ratio scale, the range of possible
infarct volumes in a rat has a minimum at zero and a maximum at the volume
of the intracranial cavity, so we expect floor and ceiling effects. Secondly,
many behavioural outcomes are measured on scales which are ordinal rather
than interval or ratio scales, where parametric approaches are considered less
appropriate. Finally, this approach can only be used where outcome in
non-lesioned (“normal”) animals is either presented or can be inferred – for
some outcomes (e.g. spontaneous motor activity), these data may not be
available. Also, if the purpose is to summarise the impact of disease
modelling rather than of the effect of an intervention in a disease model,
the NMD approach is not possible.

(f) Nonetheless, where an NMD approach is possible, it is preferred. It has fewer
relevant weaknesses than the alternative approaches, and it is a more power-
ful approach when you are interested in identifying differences between
groups of studies (see Sect. 3).

2. Giving different studies different weights
(a) The calculation of a summary estimate of effect could be as simple as

presenting the median observed effect or a mean value from the observed
effects. However, this approach would give the same weight to small and
large studies, to precise and imprecise studies.

(b) To address this, meta-analysis adjusts the weight which each study is given.
In the simplest approach, studies are weighted according to the inverse of
their observed variance. More precise studies – and this will generally also be
the larger studies – are accorded greater importance than imprecise (usually
smaller) studies. This is termed “fixed effects meta-analysis” and is appropri-
ate where all studies are essentially asking the same question – we expect the
differences between studies to be due simply to sampling error and that the
true underlying results of these studies are the same.

(c) In reviews of animal studies, it is unusual for this to be the case; drugs are
tested in different species, at different doses, in models of different severities
and at different times in relation to when disease modelling was initiated.
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We are therefore not so much interested in an “average” effect, but rather in
how the observed effect varies under different circumstances. The true
underlying results of included studies are likely to be different.

(d) To account for this, we can use random effects meta-analysis. Here the
principle is that we make a statistical observation of the differences between
studies (the heterogeneity) and compare this to the differences expected if the
studies were all drawn from the same population (i.e. if all the observed
variation was within studies). The difference between these estimates is the
between-study variability, expressed as τ2 (“tau squared”). Studies are then
weighted by the inverse of the variance within that study and the between-
study variance τ2. Because τ2 is constant across studies, if there is large
between-study variation, this contributes a major, fixed component of study
weights; and so the meta-analysis becomes more like a simple average.
Where τ2 is measured as zero, the meta-analysis behaves as a fixed effects
meta-analysis.

(e) Importantly, the choice between fixed and random effects approaches should
be made in advance, on the basis of investigator expectations of whether they
expect there to be differences in true effect sizes between studies, rather than
being decided once the data have been collected.

3. Establishing differences between studies
(a) As discussed above, the primary purpose of meta-analyses of in vivo data is

not to come to some overall estimate of effect, but rather to gain a better
understanding of differences in effect size between different types of studies.
There are a number of approaches to this. Firstly we will outline these
different approaches and then consider the strengths and weaknesses of each.

(b) Partitioning heterogeneity: In this approach, the overall heterogeneity
between studies is calculated as the weighted sum of the squared deviations
from the fixed effects estimate. The studies are then divided (partitioned)
according to the variable of interest, and meta-analysis is performed within
each group. From this we calculate the within-group heterogeneity as the
weighted sum of the squared deviations from the fixed effects estimate within
that group. We can then add together all of these “within-group
heterogeneities” and subtract this from the overall heterogeneity. What
remains, the between-group heterogeneity, is interpreted as the differences
which are “explained” by our partitioning, and the significance of such
differences can be tested using the χ2 (“chi squared”) statistic with n�1
degrees of freedom, where n is the number of partitions.

(c) Univariate meta-regression: Here we seek to model observed outcome (the
dependent variable) in a simple regression equation. Firstly, we label each
study for its status for the category of interest. Where this is a binary variable
(present or absent), studies are labelled 0 or 1. For continuous variables such
as weight, dose or time, it may be appropriate to offer these directly to the
model, if you consider the response will be linear (or could be transformed to
a linear response) or you could divide the studies into categories, for instance,
in tertiles or quartiles of the distribution of values. For these and other
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categorical variables, we then create a series of dummy variables where each
value of the category is either present or absent. With this approach we have
redundant information – if there are three categories, and a study does not
belong to A or B, it must belong to category C. It is our practice to censor the
category which is the largest and to consider these as a reference category
included in the baseline (and accounted for in the constant term (β0) of the
regression equation).

(d) Univariate meta-regression is essentially a linear regression, except that the
best fitting model is chosen based on the minimisation of the weighted
deviations from the model, with weights calculated as described above – so
more precise studies are given greater weight. The constant (β0) is an estimate
of the treatment effect in the base case (usually describing the most com-
monly observed value for the category in question), and the other
β-coefficients give an estimate of the different efficacies observed for other
values of the category being studied). These coefficients are reported with
their standard errors, from which it is possible to determine whether the
coefficient is significantly different from zero. Most software packages (such
as R metafor and STATA metareg) are also able to provide 95% confidence
intervals for efficacy according to each of the modelled values within the
category.

(e) Multiple meta-regression: In this extension, instead of one variable being
offered, multiple variables can be offered simultaneously. As with other
regression approaches, this can be done with unselected variables or with
variables selected following univariate meta-regression, and it is possible to
include interaction terms if this is desired. There is much discussion about
both the number of instances of a variable within a category required for valid
analysis and the number of categories which might be included. Having a
small number of variables within a category will lead to imprecision in the
estimate of the β-coefficient, but otherwise is unlikely to have deleterious
consequences. For the number of variables which might be modelled, there is
a general consensus that this should be no more than 10% of the number of
observations, although the provenance of this recommendation is unknown
to us.

(f) Tools: Most software packages have packages developed to support these
approaches. The flexibility of R, and in particular the ability to embed R code
within shinyapps, makes this a particularly attractive approach, and our
shinyapp, developed to support the SyRF platform, is available at https://
camarades.shinyapps.io/meta-analysis-app-syrf/.

(g) Choosing the best approach: Meta-analysis is a well-established technique,
and many books and guides (e.g. the Cochrane Handbook, https://training.
cochrane.org/handbook) are available. However, there are important
differences between datasets derived from human clinical trials and those
from animal studies. Broadly, human reviews include a relatively small
number of studies each including a large number of subjects, addressing a
reasonably well-focussed question. There may be substantial heterogeneity
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of subjects (different ages, sex, disease severity, geographical location,
treatment centre) within a single study. In contrast, in animal reviews, there
are usually a large number of individually small studies, and there may be
much less focus (different drug doses because investigators have studied
dose-response relationship, different stages or severity of disease, different
species, different disease models, different outcome measures). Within each
study, however, there is less heterogeneity, often sung animals of the same
sex, age and weight of identical genetic background kept in the same cages
on the same diet and undergoing identical study-related procedures.

It turns out these differences affect the performance of the statistical
approaches used. Firstly, SMD estimates of effect size are less precise, as
discussed in 1(c) above. In estimating the overall effect, NMD estimation of
effect size has substantially greater power.

As well as having an impact on the effect size, this also has an impact on
the attributed weight; studies which (through sampling error) have
underestimated variance are given too much weight and (because calculated
heterogeneity is the weighted squared deviation from the fixed effects esti-
mate) contribute disproportionately to the observed heterogeneity. Following
partitioning, the fixed effects estimate within that partition will move sub-
stantially towards overweighted studies (because they carry so much weight),
and the within-group heterogeneity will fall substantially as a result.

(h) This gives a large artefactual increase in the between-study heterogeneity,
which results in false-positive test of significance. In simulation studies we
have recently shown that this false-positive rate, for NMD estimates of effect
size, is over 50% (Wang et al. 2018). SMD is not affected to quite the same
extent, but the power of that approach is limited. In contrast, in those
simulations, both univariate and multivariable meta-analyses have acceptable
false-positive rates (at around the expected level of 5%); and here the power
of the NMD approach is again higher than SMD approaches (Wang et al.
2018).

(i) However, for reasons given above, it may not always be possible to calculate
NMD effect sizes, and insistence on this approach would lead to exclusion of
some studies. The best approach here depends on the number and the
proportion of studies which would have to be excluded; if this number is
less than around 30% of the total, and the studies to be excluded are in other
respects typical of the included studies, then exclusion with NMD analysis
provides greater statistical power. If however more than 30% of studies
would be excluded, or these studies have specific features of interest not
represented elsewhere in the dataset, it may be better to accept some diminu-
tion of power.

4. Approaches to identifying publication bias
(a) The Soviet Union had two key newspapers, Izvestia and Pravda. An old

Russian joke held that Izvestia meant “News” and Pravda meant “Truth”,
and that meant there was no truth in Izvestia and no news in Pravda. The
scientific literature is similarly afflicted by a focus on things which are
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newsworthy, but not necessarily true. Because our experiments (biases in the
underlying study designs notwithstanding) sample underlying truth, our
experiments are approximations to that truth. The results of our sampling
are likely to follow a normal distribution, with some overstating and some
understating the observed effect and most being about right. If our publica-
tion model only communicates a subset of our experimental results –

selected, for instance, on the basis of statistical “significance” – then the
literature will mislead. Rosenthal described this as the file drawer problem,
where the 5% of studies which were falsely positive were in the journals and
the 95% which were truly negative were in the file drawers of the
investigators. His statement contains a latent suggestion that the problem
may be due as much to investigators not seeking publication, rather than
journals rejecting neutral or negative findings. Certainly, there is evidence
from human clinical trials that this may be the case (Chan et al. 2014).

(b) In meta-analysis, we have the advantage of seeing a collection of
publications rather than a single publication. If there is an underlying effect,
we would expect to see a distribution of estimates around that true underlying
effect, with more precise studies giving estimates closer to the true effect and
less precise studies giving more variable estimates. A funnel plot is a
graphical representation of effect size plotted against a measure of precision,
and asymmetry is suggestive of “small study” effects, which include but are
not limited to publication bias. As well as visual inspection, it is possible to
analyse this mathematically using either Egger regression or the iterative
“trim and fill” approach.

(c) Each of these approaches requires using a measure of precision, and because
SMD effect size estimates are based in part on a consideration of precision,
this leads to constraints in the possible values represented in a funnel plot
determined in part by the number of subjects in each study. In clinical
research this “n” is highly variable, and so few studies have the exact same
n. In contrast, most animal studies are small, and many studies will have the
same number of subjects. This leads to funnel plots showing studies with the
same “n” describing curves easily seen in visual inspections. Analysis of
several existing datasets using both SMD and NMD approaches and simula-
tion studies modelling the presence of publication bias approaches have
shown significant publication bias is more frequently found with SMD
(rather than NMD) estimates of effect size. The simulation studies suggested
that this was due to increased false-positive results with SMD analysis
(Zwetsloot et al. 2017), and the authors suggested that, if it is not possible
to use NMD effect size estimates, alternative measure of precision such as the
square root of the number of experimental subjects should be used instead.

(d) Selective outcome reporting bias: Unlike human clinical trials publications,
most publications describing in vivo research report findings from more than
one experimental cohort, and – like human studies – they often describe more
than one outcome from each cohort or the same outcome measured at
different times. This gives substantial opportunities for selective reporting
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of outcome data and is a main factor in recommendations that ex ante study
protocols should specify which outcome measure will be considered the
primary yardstick of success or failure and a listing of all the outcomes
which will be measured.

The extent of such selective outcome reporting can be estimated by
seeking evidence of an excess of significant studies. Essentially the approach
is to establish an overall measure of effect, to then estimate, based on the
characteristics of identified studies, the number of positive studies one would
expect to observe and then to compare this to the number of positive studies
actually observed. Any excess significance might be due to data coercion in
individual experiments (asymmetric exclusion of outliers, flexibility in sta-
tistical tests applied) or to the selective non-reporting of outcomes which do
not reach statistical significance. Tsilidis et al. have applied this approach to
the in vivo neuroscience literature (Tsilidis et al. 2013) and suggest that in
some fields, up to 75% of experimental outcomes may be unreported.

5. How complete are the data?
Useful biomedical research informs either further research or policy decisions.

Further research may involve seeking to apply the findings in a different research
domain, for instance, where findings from in vivo research provide motivation for
a human clinical trial. This is conventionally called “translational research”.
Alternatively, if there are not yet sufficient data to support such translation,
there may be motivation to conduct further research in the same domain, which
one might term “cis-lational research”, or to decide that further research is likely
to be fruitless. Getting these decisions right is critical and depends not only on the
findings of individual experiments but also on an assessment of the “maturity”,
the completeness of the data portfolio being assessed. There are of course no
precise boundaries, but in principle at least it should be possible to predict the
chances of successful translation or of appropriate discontinuation. This might
allow more rational research investment decisions to be made. The thresholds of
evidence required for translation or discontinuation will of course differ
according to circumstance; a lower threshold for translation would be appropriate,
for instance, for the development of a treatment for Ebola virus infection than for
the common cold.

To date, we have not had the tools to allow a quantitative assessment of a data
portfolio against these thresholds, and such decisions have been largely qualita-
tive, based instead on habit, experience and expert opinion. However, systematic
review and meta-analysis are beginning to offer novel approaches. The optimal
approach is not yet clear, but in our reviews both of tissue plasminogen activator
(tPA) and of hypothermia in focal cerebral ischaemia, we have mature datasets,
developed because investigators have been interested either in the effectiveness
of co-treatments or where these interventions have been used as a positive
control.
(a) Assessing the impact of known variables of interest and their beta

coefficients: In some fields there is reasonably clear consensus around a
range of circumstance under which efficacy should be observed in animal
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studies to justify attempted translation to human clinical trials. For instance,
the stroke community, in the Stroke Therapy Academic Industry Roundtable
(STAIR), suggested that efficacy be observed in more than one species, for
both structural (infarct volume) and functional (neurobehavioral) outcomes,
in animals with comorbidities (STAIR 1999). Using meta-regression it is
possible to go beyond the basic requirement that efficacy be observed in such
circumstances, to consider also the precision of the estimate of efficacy in
each species, for both structural and functional outcomes, for animals with
comorbidities and so on. This can be established using meta-regression, the
factor of interest being the precision of the estimates of the beta coefficients
for each of these features. For instance, it might be considered desirable that
the impact of co-morbidity be estimated to within a 5% difference in infarct
volume.

(b) The precision of the estimate of the impact of species on the efficacy of tPA
in reducing infarct volume changed over time, increasing as more
experiments were available for analysis. The figure shows the precision of
the estimate of effect in different species and how this changed as the
literature grew. For simplicity we show the estimates when 25, 50, 75%
and all of the data (by date of publication) were included. If it were consid-
ered important to have a precise estimate of efficacy in primates, then further
experiments are required. If knowing the difference between rats and mice is
all that is important, then the data for species can be considered mature
(Fig. 1).

(c) Total variability and marginal change in τ2: We know that, even when
offered a large number of potential independent variables, meta-regression
is able to explain only a modest proportion of the observed variability. We
consider that this is due to the impact of other variables which might either be

Fig. 1 Increasing precision in estimating the impact of species: because tPA is often tested in
combination with other drugs, the literature is particularly mature. This allows us to observe
changes in the precision of the estimation of the impact of the species of the experimental animal
(the inverse of the standard error of the beta coefficient derived from meta-regression) as the amount
of available data grows. In the figure we show precision after 75, 150 and 225; and finally the
complete set of 301 experiments were available for analysis
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latent (unreported or unknown to the investigators) or too sparsely
represented to be sampled (for instance, between-lab effects). Under these
circumstances, it would be interesting to know whether an additional experi-
ment would add valuable new information or whether the data can be
considered complete.

(d) As discussed above, the between-study differences are measured using a
statistic called τ2, for which different measures are available. The computa-
tionally simplest approach is the DerSimonian and Laird estimator. This is
derived from the observed Cochrane’s Q and gives an estimate of the
heterogeneity adjusted for the number of observations. However, it tends to
give biased estimates when sample size is small, and alternative approaches
such as restricted maximum likelihood (REML) are now widely available
and are probably more appropriate in the context of meta-analysis of animal
data.

(e) When the evidence in support of a hypothesis is immature, we expect that
additional experiments – through deliberate or accidental differences in the
circumstance of testing – will add to the value of τ2. Conversely, when a field
is mature, additional experiments will add little useful additional information
and will not increase the observed τ2. We can therefore track – again using
the tPA and hypothermia datasets described above – how τ2 changes as new
studies are added.

(f) When we do this, an interesting biphasic pattern emerges. At first there is a
rapid increase in observed τ2, followed by a decline, followed by another
increase (although not to the same peak as the first rise), after which the value
is relatively constant. We think that the first rise in heterogeneity reflects
differences in experimental design (for instance, using different drug doses to
characterise dose-response relationships) and heterogeneity as different
research teams seek to replicate the originator finding. The fall occurs, we
propose, as the community unites or coalesces around designs where efficacy
is reliably observed. The second rise, we propose, occurs as investigators
seek to extend the range of circumstances under which efficacy is seen, to
identify the limits to efficacy. Finally, the plateau occurs when investigators
have tested all relevant circumstances and represents the maturation of the
evidence. Under this schema, evidence for efficacy cannot be considered
mature until τ2 has plateaued.

(g) Using datasets from systematic reviews of NXY059 (Macleod et al. 2008),
FK506 (Macleod et al. 2005), nicotinamide (Macleod et al. 2004), tirilazad
(Sena et al. 2007), IL1RA (McCann et al. 2016), hypothermia (van der Worp
et al. 2007) and tPA (Sena et al. 2010), which include varying numbers of
experiments, we have performed cumulative random effects meta-analysis
and investigated the changes in the heterogeneity as more studies are added.
As the number of included studies increases, all the datasets show the
expected increase in Cochrane’s Q. However, for both I2 (the percentage of
the variability in effect sizes that is due to variability between studies rather
than just random sampling error) and when Q is adjusted for the number of
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included studies, there is first an increase with small number of studies,
followed by a slow decline and stabilisation as more studies are included.
Using cumulative meta-regression with inclusion of explanatory variables in
the analysis shows an increasing precision in the estimates of beta
coefficients with inclusion of more studies. Similarly, the cumulative
between-study variability (measured using the REML estimate of
τ2 explained by an explanatory variable shows an initial peak with a later
decreasing trend, where it gradually stabilises, suggesting that saturation of
evidence has been reached. These preliminary findings using seven preclini-
cal datasets suggest that the systematic characterisation of heterogeneity
within stroke datasets relating to important community-identified
requirements for the circumstances in which efficacy is observed, when
considered alongside the size of effects observed, might form the basis of a
useful guide to inform decisions to proceed with further clinical testing.

(h) It is inconceivable that a drug will show efficacy under all conceivable
circumstances of testing; and (for decisions to embark on human clinical
trials at least) it is important that the limits to efficacy are established.
Therefore, where a cohort of animal studies shows evidence for efficacy
but little or no heterogeneity, this should raise concern – it is scarcely credible
that a drug always works and much more likely that the range of
circumstances under which efficacy has been tested has been too narrow
reliably to define the characteristics of drug response.

(i) This is important; the GRADE approach to evidence synthesis considers that
heterogeneity in a body of evidence is a bad thing and that the strength of
evidence-based recommendations should be downgraded in the presence of
heterogeneity. While this may be true for very tightly defined clinical
questions, it is in our view certainly not the case when summarising a
group of animal studies.

6. Examples
(a) Disease models: Systematic review and meta-analysis can be used to sum-

marise published work using a particular disease model. For instance, Currie
and colleagues examined the literature on bone cancer-induced pain (Currie
et al. 2013). Across 112 studies they found substantial increases in pain-
related behaviours, most commonly measured using mechanical allodynia,
along with reduced body weight and reduced locomotion, but no change in
reported food intake. There was also evidence of changes in the spinal cord,
each reported by more than five publications, of astrocytosis, and increased
c-Fos, substance P (NK1) receptor internalisation, dynorphin, IL-1b and
TNF-a.

(b) Drugs: Rooke et al. reported (Rooke et al. 2011) the effect of dopamine
agonists in animal models of Parkinson’s disease. For drugs tested in more
than one publication, all drugs in common clinical use showed evidence of
substantial efficacy, with ropinirole, rotigotine, apomorphine, lisuride and
pramipexole having more efficacy (in the point estimate) than the 95%
confidence limits of the overall estimate for all drugs combined. However,
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as discussed above these estimates have limited value, and random allocation
to group was reported by 16% of publications (16%), blinded assessment of
outcome by 15% and a sample size calculation by <1%. Across all
neurobehavioural outcomes, there was an inverse relationship between
study quality and effect size, and reporting of blinded assessment of outcome
was associated with significantly smaller effect sizes.

(c) Outcome measures: Egan et al. conducted a systematic review of
publications reporting the efficacy of drugs tested in animal models of
Alzheimer’s disease (Egan et al. 2016). As well as describing the variety of
neurobehavioural and histological outcomes which had been reported, they
gave particular focus to the use of the Morris water maze. Reporting of
experimental details was generally incomplete; 16% of studies did not report
the size of the water maze used, and in those that did, this ranged from 85 cm
to 200 cm. 35% of studies did not report water temperature, and in those that
did, this ranged from 16�C to 28�C. The number of acquisition trials per day
ranged from 2 to 12 and was unreported in 23%, and the number of days
training ranged from 1 to 15 and was unreported in 13. Remarkably, in
57 publications describing the probe phase, there were 59 different
approaches used to demonstrate efficacy, suggesting a degree of flexibility
in analysis and reporting. Only 36% of experiments reported randomisation
to intervention or control, and only 24% of experiments reported the blinded
assessment of outcome. Overall, reported efficacy was significantly higher in
non-randomised and in non-blinded studies.

(d) Risks of bias: Following the publication of the neutral SAINT II trial (Shuaib
et al. 2007), we conducted a systematic review of published in vivo data on
the efficacy of NYY-059 (Macleod et al. 2008). Reporting of measures to
reduce the risk of bias was again low, with lower estimates of improvement
in infarct volume in those studies which reported randomisation, in those
which reported the blinded conduct of the experiment and in those which
reported the blinded assessment of outcome. These findings were supported
by a later individual animal meta-analysis which also had access to unpub-
lished industry data (Bath et al. 2009).

In later work we examined reporting of risks of bias in work published in
leading journals and, separately, in work from leading UK institutions
(Macleod et al. 2015). We found journal impact factor to be no guarantee
of study quality, and in fact randomisation was less frequently reported in
high-impact journals. At an institutional level, only 1 of 1,173 publications
from leading UK institutions reported 4 aspects of study design
(randomisation, blinding, reporting of inclusions and exclusions and sample
size calculations) identified by Landis et al. as being critical to allowing
readers to judge the provenance of the findings presented, and 68% of
publications reported not one of these.

(e) Power calculations: Appropriate design of animal experiments includes
consideration of how many subjects should be included. Formal power
calculations require assertion of the minimum effect size of interest which
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the investigator would like to be able to detect, their tolerance of the risk of
missing a true result and the variability of the outcome measure used. As well
as giving some indication of the possible statistical variance which might be
observed when a lab uses a model or outcome measure for the first time,
knowledge of the performance of different outcome measures testing broadly
similar behavioural substrates can inform refinement of experimental designs
to reduce animal pain and suffering. For instance, as part of a systematic
review of animal studies modelling chemotherapy-induced peripheral neu-
ropathy, Currie et al. compared the statistical performance of different
approaches to measuring mechanical allodynia, showing superiority of elec-
tronic over mechanical von Frey testing (Currie et al. 2019).

(f) Curated current contents: Borrowing from the concept of “Living” system-
atic reviews (Elliott et al. 2017), real-time information in a given field can be
summarised on an online platform which presents the up-to-date results
visually. Ideally, such a platform should be interactive, allowing any research
user (a biomedical researcher, a funder, an institution) not only to gain a
quick overview of the field but also to filter the results in a way which is most
relevant to them, e.g. by specific models or treatments of interest, by
reporting quality or by year of publication. Two recent examples are our
RShiny applications which summarise the literature on animal models of
depression (https://abannachbrown.shinyapps.io/preclinical-models-of-
depression/) and animal models of chemotherapy-induced peripheral neurop-
athy (https://khair.shinyapps.io/CIPN/).

3 Summary

The amount of relevant in vivo data is substantial, and nonsystematic attempts to
summarise what is already known may draw misleading conclusions. Because the
selection of included information is an objective process, it is not possible critically
to appraise the conclusions drawn, other than by reference to the reputation of the
authors (as indeed is the case with the current work). Systematic review offers a
transparent approach to identifying relevant information such that it would be
possible for others to replicate the approach. Such reviews also allow ascertainment
of the features of a body of work, which might lead to suggestions for how a field
might seek improvement. Meta-analysis allows a quantitative summary of overall
effects, any association between various study design factors and observed outcome,
an assessment of the likelihood of publication bias and recommendations for sample
size calculations for future experiments.

While the process is burdensome, the value of the information obtained is
substantial, and emerging automation tools are likely substantially to reduce the
costs, and the time taken, for systematic review and meta-analysis.
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Abstract
Scholarly publishers can help to increase data quality and reproducible research
by promoting transparency and openness. Increasing transparency can be
achieved by publishers in six key areas: (1) understanding researchers’ problems
and motivations, by conducting and responding to the findings of surveys;
(2) raising awareness of issues and encouraging behavioural and cultural change,
by introducing consistent journal policies on sharing research data, code and
materials; (3) improving the quality and objectivity of the peer-review process by
implementing reporting guidelines and checklists and using technology to iden-
tify misconduct; (4) improving scholarly communication infrastructure with
journals that publish all scientifically sound research, promoting study registra-
tion, partnering with data repositories and providing services that improve data
sharing and data curation; (5) increasing incentives for practising open research
with data journals and software journals and implementing data citation and
badges for transparency; and (6) making research communication more open
and accessible, with open-access publishing options, permitting text and data
mining and sharing publisher data and metadata and through industry and
community collaboration. This chapter describes practical approaches being
taken by publishers, in these six areas, their progress and effectiveness and the
implications for researchers publishing their work.

Keywords
Data sharing · Open access · Open science · Peer review · Publishing · Reporting
guidelines · Reproducible research · Research data · Scholarly communication

1 Introduction

Scholarly publishers have a duty to maintain the integrity of the published scholarly
record. Science is often described as self-correcting, and when errors are identified in
the published record, it is the responsibility of publishers to correct them. This is
carried out by publishing corrections, expressions of concern or, sometimes,
retracting published articles. Errors in published research can be honest, such as
typographical errors in data tables or broken links to source material, but errors also
result from research misconduct, including fraudulent or unethical research, and
plagiarism. Only a small fraction – less than 0.1% (Grieneisen and Zhang 2012) – of
published research is retracted, and papers are more likely to be retracted due to
misconduct, than honest error (Fang et al. 2012).

However, the numbers of reported corrections and retractions do not account for
the more pressing issue: that a large proportion of published – assumed accurate –
research results are not reproducible, when reproducibility and replicability are
tenets of science. Pharmaceutical companies have reported that fewer than 25% of
the results reported in peer-reviewed publications could be reproduced in their labs
(Prinz et al. 2011). A survey of 1,500 researchers found that more than half of
respondents could not reproduce their own results and more than 70% could not
reproduce the results of others (Baker 2016). An economic analysis in 2015
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estimated that irreproducible preclinical research costs US $28 billion per year
(Freedman et al. 2015).

There are numerous causes of irreproducibility and suboptimal data quality
(Table 1). Some of these causes relate to how research is conducted and supervised,
and others relate to how well or completely research is reported. Data quality and
reproducibility cannot be assessed without complete, transparent reporting of
research and the availability of research outputs which can be reused. Scholarly
publishers have a responsibility to promote reproducible research (Hrynaszkiewicz
et al. 2014) but are more able to influence the reporting of research than the conduct
of research. Transparency is a precursor to reproducibility and can be supported by
journals and publishers (Nature 2018).

Table 1 Causes of poor reproducibility and poor data quality in preclinical research

Relevant chapters elsewhere in this textbook

Conduct of research

Experimental design Chapters “Guidelines and Initiatives for Good
Research Practice”, “Learning from Principles of
Evidence-Based Medicine to Optimize Nonclinical
Research Practices”, “General Principles of
Preclinical Study Design”, “Blinding and
Randomization”, “Out of Control? Managing
Baseline Variability in Experimental Studies with
Control Groups”, “Building Robustness Intro
Translational Research”, and “Design of Meta-
Analysis Studies”

Quality control Chapters “Quality of Research Tools”, “Quality
Governance in Biomedical Research”, and “Costs of
Implementing Quality in Research Practice”

Lab supervision and training

Adherence to ethical standards Chapter “Good Research Practice: Lessons from
Animal Care and Use”

Culture of publishing some results, and
not others

Chapter “Resolving the Tension Between
Exploration and Confirmation in Preclinical
Biomedical Research”

Reporting of research

Completeness of methods descriptions Chapters “Minimum Information and Quality
Standards for Conducting, Reporting, and Organizing
In Vitro Research”, and “Minimum Information in In
Vivo Research”

Accuracy of images, figures and graphs

Availability of research data, protocols,
computer code

Chapters “Quality of Research Tools”, “Electronic
Lab Notebooks and Experimental Design Assistants”,
and “Data Storage”

Statistical reporting Chapter “A Reckless Guide to P-Values: Local
Evidence, Global Errors”

Publication of all scientifically sound
results, regardless of their outcome
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Implementation of greater transparency in, reporting and reuse potential of,
research by publishers can be achieved in several ways:

1. Understanding researchers’ problems and motivations
2. Raising awareness and changing behaviours
3. Improving the quality, transparency and objectivity of the peer-review process
4. Better scholarly communication infrastructure and innovation
5. Enhancing incentives
6. Making research publishing more open and accessible

This chapter describes practical approaches being taken by publishers, in these six
areas, to achieve greater transparency and discusses their progress and effectiveness
and the implications for researchers.

2 Understanding Researchers’ Problems and Motivations

Publishers wishing to increase transparency and reproducibility need to understand
the problems (or “challenges”) researchers have in practising reproducible and
transparent research. Sharing of research data is essential for reproducible research,
and between 2016 and 2018, several large surveys of researchers were conducted by
publishing and publishing technology companies, providing insights into
researchers’ reported data sharing practices and behaviours, as well as insight into
what motivates researchers to share, or not share, research data.

A survey conducted in 2017, and published in 2018, by the publisher Springer
Nature explored the “practical challenges” researchers have in data sharing, which
received 7,719 responses, one of the largest of its kind. Seventy-six percent of
respondents reported that the discoverability of their research data is important to
them, and 63% had previously shared data associated with a peer-reviewed article.
However, researchers also reported common problems in sharing their data, includ-
ing difficulties in “organising data in a presentable and useful way” (46% of
respondents), being unsure about licencing and copyright of data (37%) and not
knowing which data repository to use (33%). A lack of time (26%) and being unable
to cover costs of data sharing (19%) were also commonly cited (Stuart et al. 2018)
(Fig. 1).

Disciplinary differences were also identified in the survey. Biological science
researchers reported the highest levels of data sharing (75%), and medical science
researchers reported that copyright and licencing (data ownership) issues were their
biggest challenge. Medical science researchers were also most likely to report
concerns about data sensitivity and misuse, and concerns about protecting research
participants, consistent with other surveys (Rathi et al. 2012) of clinical researchers.

Surveys from the publishers Wiley (Wiley Open Science Researcher Survey
2016) and Elsevier (Berghmans et al. 2017) and the publishing technology company
Digital Science (Science et al. 2017) have found similar results regarding the
proportion of researchers who report they share data and the ways in which
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researchers share data (Table 2). The most common ways of sharing data that were
reported tend to be suboptimal, with email being the most common method for
private data sharing (Allin 2018) and journal supplementary materials being most
common for public data sharing (email is not secure enough for private data sharing;
data repositories are preferred over supplementary materials for public data sharing)
(Michener 2015).

2.1 Understanding Motivations to Share Data

Sharing research data has been associated with an increase in the number of citations
that researchers’ papers receive (Piwowar et al. 2007; Piwowar and Vision 2013;
Colavizza et al. 2019) and an increase in the number of papers that research projects
produce (Pienta and Alter 2010). Some researchers report that increased academic
credit (Science et al. 2017), and increased visibility of their research (Wiley Open
Science Researcher Survey 2016; Schmidt et al. 2016), motivates them to share
research data. Publishers and other service providers to researchers can help to both
solve problems and increase motivations, in particular those relating to academic
credit, impact and visibility (see Sect. 6).

Fig. 1 Organising data in a presentable and useful way was the most common problem for
researchers in data sharing, in a large survey (n ¼ 7,719). Figure adapted from Stuart et al. (2018)
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3 Raising Awareness and Changing Behaviours

Scholarly publishers and journals can help to raise awareness of issues through their
wide or community-focused readership – with editorials, opinion pieces and confer-
ence and news coverage. Behavioural change can be created by changing journal and
publisher policies, as researchers are motivated to comply with them when submit-
ting papers (Schmidt et al. 2016).

3.1 Journal Policies

Journal policies and guides to authors include large amounts of information
covering topics from manuscript formatting, research ethics and conflicts of
interest. Many journals and publishers have, since 2015, endorsed – and are
beginning to implement – the Transparency and Openness Promotion (TOP)
guidelines. The TOP guidelines are a comprehensive but aspirational set of journal
policies and include eight modular standards, each with three levels of increasing
stringency including transparency in data, code and protocols (Nosek et al. 2014).
A summary table of the requirements is available in the public domain from the
Center for Open Science (Table 3). Full compliance with the TOP guidelines is

Table 2 Seventy percent of researchers report that they share data but only 26% use data
repositories when the results of five large surveys are combined

Survey
responses
and findings

Springer Nature
global surveya

Springer
Nature
Japan
surveyb

Elsevier
survey Wiley survey

Digital
Science
survey

Number of
respondents

7,719 1,966 1,200 4,668 2,352

Year
published
(year
conducted)

2018
(2017)

2018
(2018)

2017
(2016)

2017
(2016)

2017
(2017)

Level of data
sharing
reported %

63 95b 64 69 60

Use of data
repositories
reported %

21 25 13 41 30

Most
common
data sharing
problem

Organising data
in a presentable
and useful way

Concerns
about
misuse of
data

Data
ownership

Intellectual
property or
confidentiality
issues

Data
sensitivity

aFocused on sharing data associated with peer-reviewed publications rather than data sharing in
general
bExplicitly included private (peer-to-peer) data sharing and public data sharing
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Table 3 TOP guidelines summary tablea

Not
implemented Level I Level II Level III

Citation
standards

Journal
encourages
citation of
data, code
and materials
or says
nothing

Journal describes
citation of data in
guidelines to
authors with
clear rules and
examples

Article provides
appropriate
citation for data
and materials used
consistent with
journal’s author
guidelines

Article is not
published until
providing
appropriate
citation for data
and materials
following
journal’s author
guidelines

Data
transparency

Journal
encourages
data sharing
or says
nothing

Article states
whether data are
available and, if
so, where to
access them

Data must be
posted to a trusted
repository.
Exceptions must
be identified at
article submission

Data must be
posted to a trusted
repository, and
reported analyses
will be
reproduced
independently
prior to
publication

Analytic
methods
(code)
transparency

Journal
encourages
code sharing
or says
nothing

Article states
whether code is
available and, if
so, where to
access it

Code must be
posted to a trusted
repository.
Exceptions must
be identified at
article submission

Code must be
posted to a trusted
repository, and
reported analyses
will be
reproduced
independently
prior to
publication

Research
materials
transparency

Journal
encourages
materials
sharing or
says nothing

Article states
whether
materials are
available and, if
so, where to
access them

Materials must be
posted to a trusted
repository.
Exceptions must
be identified at
article submission

Materials must be
posted to a trusted
repository, and
reported analyses
will be
reproduced
independently
prior to
publication

Design and
analysis
transparency

Journal
encourages
design and
analysis
transparency
or says
nothing

Journal
articulates design
transparency
standards

Journal requires
adherence to
design
transparency
standards for
review and
publication

Journal requires
and enforces
adherence to
design
transparency
standards for
review and
publication

Study
preregistration

Journal says
nothing

Article states
whether
preregistration of
study exists and,

Article states
whether
preregistration of
study exists and, if
so, allows journal

Journal requires
preregistration of
studies and
provides link and
badge in article to

(continued)
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typically a long-term goal for journals and publishers, and implementation of the
requirements is tending to happen in progressive steps, with most progress being
made initially in policies for sharing of research data.

3.1.1 Standardising and Harmonising Journal Research Data Policies
While availability of research data alone does not enable reproducible research,
unavailability of data (Ioannidis et al. 2009) and suboptimal data curation
(Hardwicke et al. 2018) have been shown to lead to failures to reproduce results.
Historically, relatively few journals have had research data policies, and, where
policies have existed, they have lacked standards and consistency, which can be
confusing for researchers (authors) and research support staff (Naughton and
Kernohan 2016; Barbui 2016). In 2016 Springer Nature, which publishes more
than 2,500 journals, begun introducing standard, harmonised research data policies
to its journals (Hrynaszkiewicz et al. 2017a). Similar initiatives were introduced by
some of the other largest journal publishers Elsevier, Wiley and Taylor and Francis
in 2017, greatly increasing the prevalence of journal data sharing policies. These
large publishers have offered journals a controlled number (usually four or five) of
data policy types, including a basic policy with fewer requirements compared to the
more stringent policies (Table 4).

Providing several options for journal data policy is necessary because, across
multiple research disciplines, some research communities and their journals are more
able to introduce strong data sharing requirements than others. In parallel to these

Table 3 (continued)

Not
implemented Level I Level II Level III

if so, where to
access it

access during peer
review for
verification

meeting
requirements

Analysis plan
preregistration

Journal says
nothing

Article states
whether
preregistration of
study exists and,
if so, where to
access it

Article states
whether
preregistration
with analysis plan
exists and, if so,
allows journal
access during peer
review for
verification

Journal requires
preregistration of
studies with
analysis plans and
provides link and
badge in article to
meeting
requirements

Replication Journal
discourages
submission
of replication
studies or
says nothing

Journal
encourages
submission of
replication
studies

Journal
encourages
submission of
replication studies
and conducts
results blind
review

Journal uses
registered reports
as a submission
option for
replication studies
with peer review
prior to observing
the study
outcomes

aReproduced and available from the Center for Open Science, under a Creative Commons public
domain CC0 waiver
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individual publisher’s data policy initiatives, a global collaboration of publishers,
and other stakeholders in research, have created a master research data policy
framework that supports all journal and publisher requirements (Hrynaszkiewicz
et al. 2017b, 2019).

There have also been research data policy initiatives from communities of
journals and journal editors. In 2010 journals in ecology and evolutionary biology
joined in supporting a Joint Data Archiving Policy (JDAP) (Whitlock et al. 2010),
Public Library of Science (PLOS) introduced a strong data sharing policy to all its
journals in 2014, and in 2017 the International Committee of Medical Journal
Editors (ICMJE) introduced a standardised data sharing policy (Taichman et al.
2017) for its member journals, which include BMJ, Lancet, JAMA and the New
England Journal of Medicine. The main requirement of the ICMJE policy was not to
mandate data sharing but for reports of clinical trials to include a data sharing
statement.

Data sharing statements (also known as data availability statements) are a com-
mon feature of journal and publisher data policies. They provide a statement
about where data supporting the results reported in a published article can be
found – including, where applicable, hyperlinks to publicly archived datasets
analysed or generated during the study. Many journals and publishers provide
guidance on preparing data availability statements (e.g. https://www.
springernature.com/gp/authors/research-data-policy/data-availability-statements/
12330880). All Public Library of Science (PLOS), Nature and BMC journals require
data availability statements (Colavizza et al. 2019). Some research funding agencies
– including the seven UK research councils (UK Research and Innovation 2011) –
also require the provision of data availability statements in published articles.

Table 4 Summary of Springer Nature journal data policy types and examples of journals with
those policy types

Policy
type/
level Policy summary

Example
journal Weblink

1 Data sharing is encouraged Cardiovascular
Drugs and
Therapy

https://www.springer.com/
medicine/cardiology/journal/
10557

2 Data sharing and evidence of
data sharing and data
availability statements are
encouraged

Clinical Drug
Investigation

https://www.springer.com/
adis/journal/40261

3 Data sharing encouraged and
data statements are required

Nature http://www.nature.com/
authors/policies/data/data-
availability-statements-data-
citations.pdf

4 Data sharing, evidence of data
sharing, data availability
statements and peer review of
data required

Scientific Data https://www.nature.com/sdata/
policies/data-policies
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Experimental pharmacology researchers publishing their work in 2019 and
beyond, regardless of their target journal(s), should be prepared at minimum to
provide a statement regarding the availability and accessibility of the research data
that support the results of their papers.

Code and Materials Sharing Policies
To assess data quality and enable reproducibility, transparency and sharing of
computer code and software (and supporting documentation) are also important –
as is, where applicable, the sharing of research materials. Materials include samples,
cell lines and antibodies. Journal and publisher policies on sharing code, software
and materials are becoming more common but are generally less well evolved and
less widely established compared to research data policies.

In 2015 the Nature journals introduced a policy across all its research titles that
encourages all authors to share their code and provide a “code availability” statement
in their papers (Nature 2015). Nature Neuroscience has taken this policy further, by
piloting peer review of code associated with research articles in the journal (Nature
2017). Software-focused journals such as the Journal of Open Research Software
and Source Code for Biology and Medicine tend to have the most stringent
requirements for availability and usability of code.

3.2 Effectiveness of Journal Research Data Policies

Journal submission guidelines can increase transparent research practices by authors
(Giofrè et al. 2017; Nuijten et al. 2017). Higher journal impact factors have been
associated with stronger data sharing policies (Vasilevsky et al. 2017). Stronger data
policies that mandate and verify data sharing by authors, and require data availability
statements, are more effective at ensuring data are available long term (Vasilevsky et al.
2017) compared to policies that passively encourage data sharing (Vines et al. 2013).
Many journal policies ask authors to make supporting data available “on reasonable
request”, as a minimum requirement. This approach to data sharingmay be a necessity in
medical research, to protect participant privacy, but contacting authors of papers to obtain
copies of datasets is an unreliable method of sharing data (Vanpaemel et al. 2015;
Wicherts et al. 2006; Savage and Vickers 2009; Rowhani-Farid and Barnett 2016).
Using more formal, data sharing (data use) agreements can improve authors’willingness
to share data on request (Polanin and Terzian 2018), and guidelines on depositing clinical
data in controlled-access repositories have been defined by editors and publishers, as a
practical alternative to public data sharing (Hrynaszkiewicz et al. 2016). Publishers are
also supporting editors to improve policy effectiveness and consistency of implementa-
tion (Graf 2018).
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4 Improving the Quality, Transparency and Objectivity
of the Peer-Review Process

The reporting of research methods, interventions, statistics and data on harms of
drugs, in healthcare research, and the presentation of results in journal articles, has
repeatedly been found to be inadequate (Simera et al. 2010). Increasing the consis-
tency and detail of reporting key information in research papers, with reporting
guidelines and checklists, supports more objective assessment of papers in the peer-
review process.

4.1 Implementation of Reporting Guidelines

The prevalence and endorsement of reporting guidelines, catalogued by the EQUA-
TOR Network (http://www.equator-network.org), in journals has increased substan-
tially in the last decade. Reporting guidelines usually comprise a checklist of key
information that should be included in manuscripts, to enable the research to be
understood and the quality of the research to be assessed. Reporting guidelines are
available for a wide array of study designs, such as randomised trials (the CON-
SORT guideline), systematic reviews (the PRISMA guidelines) and animal preclini-
cal studies (the ARRIVE guidelines; discussed in detail in another chapter in this
volume).

The positive impact of endorsement of reporting guidelines by journals has
however been limited (Percie du Sert et al. 2018), in part due to reporting guidelines
often being implemented by passive endorsement on journal websites (including
them in information for authors). Some journals, such as the medical journals BMJ
and PLOS Medicine, have mandated the provision of certain completed reporting
guidelines, such as CONSORT, as a condition of submitting manuscripts. Endorse-
ment and implementation of reporting guidelines has been more prevalent in journals
with higher impact factors (Shamseer et al. 2016). More active interventions to
enforce policy in the editorial process are generally more effective, as demonstrated
with data sharing policies (Vines et al. 2013), but these interventions are also more
costly as they increase demands on authors’ and editors’ time. For larger, multidis-
ciplinary journals publishing many types of research, identifying and enforcing the
growing number of relevant reporting guidelines, which can vary from paper to
paper that is submitted, is inherently more complex and time-consuming. These
processes of checking manuscripts for adherence to guidelines can however be
supported with artificial intelligence tools such as https://www.penelope.ai/.

An alternative approach to this problem taken by the multidisciplinary science
journal Nature was to introduce a standardised editorial checklist to promote trans-
parent reporting that could be applied to many different study designs and research
disciplines. The checklist was developed by the journal in collaboration with
researchers and funding agencies (Anon 2013) and is implemented by professional
editors, who require that all authors complete it. The checklist elements focus on
experimental and analytical design elements that are crucial for the interpretation of
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research results. This includes description of methodological parameters that can
introduce bias or influence robustness and characterisation of reagents that may be
subject to biological variability, such as cell lines and antibodies. The checklist has
led to improved reporting of risks of bias in in vivo research and improved reporting
of randomisation, blinding, exclusions and sample size calculations; however
in vitro data compliance was not improved, in an independent assessment of the
checklist’s effectiveness (Macleod and The NPQIP Collaborative Group 2017; The
NPQIP Collaborative Group 2019).

In 2017 the Nature checklist evolved into two documents, a “reporting summary”
that focuses on experimental design, reagents and analysis and an “editorial policy
checklist” that covers issues such as data and code availability and research ethics.
The reporting summary document is published alongside the associated paper and, to
enable reuse by other journals and institutions, is made available under an open-
access licence (Announcement 2017) (Fig. 2).

4.2 Editorial and Peer-Review Procedures to Support
Transparency and Reproducibility

Peer review is important for assessing and improving the quality of published
research (even if evidence of its effectiveness is often questioned (Smith 2010)).
Most journals have been, understandably, reluctant to give additional mandatory
tasks to peer reviewers – who may already be overburdened with the continuing
increase in volume of publications (Kovanis et al. 2016) – to ensure journal policy
compliance and assessment of research data and code. Journal policies often encour-
age reviewers to consider authors’ compliance with data sharing policies, but formal
peer review of data tends to occur only in a small number of specialist journals, such
as data journals (see later in this chapter) and journals with the strictest data sharing
policies. The most stringent research data policy of Springer Nature’s four types of
policy requires peer reviewers to access the supporting data for every publication in a
journal and includes guidelines for peer reviewers of data:

Peer reviewers should consider a manuscript’s Data availability statement (DAS), where
applicable. They should consider if the authors have complied with the journal’s policy on
the availability of research data, and whether reasonable effort has been made to make the
data that support the findings of the study available for replication or reuse by other
researchers.

For the Data availability statement, reviewers should consider:

• Has an appropriate DAS been provided?
• Is it clear how a reader can access the data?
• Where links are provided in the DAS, are they working/valid?
• Where data access is restricted, are the access controls warranted and appropriate?
• Where data are described as being included with the manuscript and/or supplementary

information files, is this accurate?

For the data files, where available, reviewers should consider:
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Fig. 2 The Nature Research Reporting Summary Checklist, available under a Creative Commons
attribution licence from https://www.nature.com/authors/policies/ReportingSummary.pdf
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• Are the data in the most appropriate repository?
• Were the data produced in a rigorous and methodologically sound manner?
• Are data and any metadata consistent with file format and reporting standards of the

research community?
• Are the data files deposited by the authors complete and do they match the descriptions in

the manuscript?
• Do they contain personally identifiable, sensitive or inappropriate information?

However, as of 2019 fewer than ten journals have implemented this policy of
formal data peer review as a mandatory requirement, and journal policies on data
sharing and reproducibility tend to focus on transparent reporting, such as including
links to data sources. This enables a motivated peer reviewer to assess aspects of a
study, such as data and code, more deeply, but this is not routinely expected.

In specific disciplines, journals and study designs, additional editorial assessment
and statistical review are routinely employed. Some medical journals, such as The
Lancet, consistently invite statistical review of clinical trials, and statistical reviewers
have been found to increase the quality of reporting of biomedical articles (Cobo
et al. 2007). Not all journals, such as those without full-time editorial staff, have
sufficient resources to statistically review all research papers. Instead, journals may
rely on editors and nonstatistical peer reviewers identifying if statistical review is
warranted and inviting statistical review case-by-case.

Some journals have taken procedures on assessing reproducibility and transpar-
ency even further. The journal Biostatistics employs an Associate Editor for repro-
ducibility, who awards articles “kite marks” for reproducibility, which are
determined by the availability of code and data and if the Associate Editor for
reproducibility is able to reproduce the results in the paper (Peng 2009). Another
journal, npj Breast Cancer, has involved an additional editor, a Research Data Editor
(a professional data curator), to assess every accepted article and give authors
editorial support to describe and share link to the datasets that support their articles
(Kirk and Norton 2019).

4.3 Image Manipulation and Plagiarism Detection

Plagiarism and self-plagiarism are common forms of misconduct and common
reasons for papers being retracted (Fang et al. 2012). In the last decade, many
publishers have adopted plagiarism detection software, and some apply this system-
atically to all submissions. Plagiarism detection software, such as iThenticate, works
by comparing manuscripts against a database of billions of web pages and 155 mil-
lion content items, including 49 million works from 800 scholarly publishers that
participate in CrossRef Similarity Check (https://www.crossref.org/services/similar
ity-check/). Plagiarism detection is an important mechanism for publishers, editors
and peer reviewers to maintain quality and integrity in the scholarly record.
Although less systematically utilised in the editorial process, software for automated
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detection of image manipulation – a factor in about 40% of retractions in the
biomedical literature and thought to affect 6% of published papers – is also available
to journals (Bucci 2018).

5 Better Scholarly Communication Infrastructure
and Innovation

Publishers provide and utilise scholarly communication infrastructure, which can be
both an enabler and a barrier to reproducibility. In this chapter, “scholarly commu-
nication infrastructure” means journals, article types, data repositories, publication
platforms and websites, content production and delivery systems and manuscript
submission and peer-review systems.

5.1 Tackling Publication (Reporting) Bias

Publication bias, also known as reporting bias, is the phenomenon in which only
some of the results of research are published and therefore made available to inform
evidence-based decision-making. Papers that report “positive results”, such as posi-
tive effects of drugs on a condition or disease, are more likely to be published, are
more likely to be published quickly and are likely to be viewed more favourably by
peer reviewers (McGauran et al. 2010; Emerson et al. 2010). In healthcare-related
research, this is a pernicious problem, and widely used healthcare interventions, such
as the antidepressant reboxetine (Eyding et al. 2010), have been found to be
ineffective or potentially harmful, when unpublished results and data are obtained
and combined with published results in meta-analyses.

5.1.1 Journals
Providing a sufficient range of journals is a means to tackle publication bias. Some
journals have dedicated themselves exclusively to the publication of “negative”
results, although have remained niche publications and many have been
discontinued (Teixeira da Silva 2015). But there are many journals that encourage
publication of all methodologically sound research, regardless of the outcome.
The BioMed Central (BMC) journals launched in 2000 with this mission to assess
scientific accuracy rather than impact or importance and to promote publication of
negative results and single experiments (Butler 2000). Many more “sounds science”
journals – often multidisciplinary “mega journals” including PLOS One, Scientific
Reports and PeerJ – have since emerged, almost entirely based on an online-only
open-access publishing model (Björk 2015). There is no shortage of journals to
publish scientifically sound research, yet publication bias persists. More than half of
clinical trial results remain unpublished (Goldacre et al. 2018).
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5.1.2 Preregistration of Research
Preregistration of studies and study protocols, in dedicated databases, before data are
collected or patients recruited, is another means to reduce publication bias. Registra-
tion is well established – and mandatory – for clinical trials, using databases such as
ClinicalTrials.gov and the ISRCTN register. The prospective registration of clinical
trials helps ensure the data analysis plans, participant inclusion and exclusion criteria
and other details of a planned study are publicly available before publication of
results. Where this information is already in the public domain, it reduces the
potential for outcome switching or other sources of bias to occur in the reported
results of the study (Chan et al. 2017). Clinical trial registration has been common
since 2005, when the ICMJE introduced a requirement for prospective registration of
trials as a condition for publication in its member journals. Publishers and editors
have been important in implementing this requirement to journals.

Preregistration has been adopted by other areas of research, and databases are
now available for preregistration of systematic reviews (in the PROSPERO data-
base) and for all other types of research, with the Open Science Framework (OSF)
and the Registry for International Development Impact Evaluations (RIDIE).

Registered Reports
A more recent development for preregistration is a new type of research article,
known as a registered report. Registered reports are a type of journal article where
the research methods and analysis plans are both pre-registered and submitted to a
journal for peer review before the results are known (Robertson 2017). Extraordinary
results can make referees less critical of experiments, and with registered reports,
studies can be given in principle acceptance decisions by journals before the results
are known, avoiding unconscious biases that may occur in the traditional peer-
review process. The first stage of the peer-review process used for registered reports
assesses a study’s hypothesis, methods and design, and the second stage considers
how well experiments followed the protocol and if the conclusions are justified by
the data (Nosek and Lakens 2014). Since 2017, registered reports began to be
accepted by a number of journals from multiple publishers including Springer
Nature, Elsevier, PLOS and the BMJ Group.

Protocol Publication and Preprint Sharing
Predating registered reports, in clinical trials in particular, it has been common since
the mid-2000s for researchers to publish their full study protocols as peer-reviewed
articles in journals such as Trials (Li et al. 2016). Another form of early sharing of
research results, before peer review has taken place or they are submitted to a
journal, is preprint sharing. Sharing of preprints has been common in physical
sciences for a quarter of century or more, but since the 2010s preprint servers for
biosciences (biorxiv.org), and other disciplines, have emerged and are growing
rapidly (Lin 2018). Journals and publishers are, increasingly, encouraging their
use (Luther 2017).
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5.2 Research Data Repositories

There are more than 2000 data repositories listed in re3data (https://www.re3data.
org/), the registry of research data repositories (and more than 1,100 databases in the
curated FAIRsharing resource on data standards, policies and databases https://
fairsharing.org/). Publishers’ research data policies generally preference the use of
third party or research community data repositories, rather than journals hosting raw
data themselves. Publishers can help enable repositories to be used, more visible, and
valued, in scholarly communication. This is beneficial for researchers and
publishers, as connecting research papers with their underlying data has been
associated with increased citations to papers (Dorch et al. 2015; Colavizza et al.
2019).

Publishers often provide lists of recommended or trusted data repositories in their
data policies, to guide researchers to appropriate repositories (Callaghan et al. 2014)
as well as linking to freely available repository selection tools (such as https://
repositoryfinder.datacite.org/). Some publishers – such as Springer Nature via its
Research Data Support helpdesk (Astell et al. 2018) – offer free advice to researchers
to find appropriate repositories. The journal Scientific Data has defined criteria for
trusted data repositories in creating and managing its list of data repositories and
makes its recommended repository list available for reuse (Scientific Data 2019).

Where they are available, publishers generally promote the use of community
data repositories – discipline-specific, data repositories and databases that are
focused on a particular type or format of data such as GenBank for genetic sequence
data. However, much research data – sometimes called the “long tail” of research
data (Ferguson et al. 2014) – do not have common databases, and, for these data,
general-purpose repositories such as figshare, Dryad, Dataverse and Zenodo are
important to enable all research data to be shared permanently and persistently.

Publishers, and the content submission and publication platforms they use, can be
integrated with research data repositories – in particular these general repositories –
to promote sharing of research data that support publications. The Dryad repository
is integrated to varying extents with a variety of common manuscript submission
systems such as Editorial Manager and Scholar One. Integration with repositories
makes it easier and more efficient for authors to share data supporting their papers.
The journal Scientific Data enables authors to deposit data into figshare seamlessly
during its submission process, resulting in more than a third of authors depositing
data in figshare (data available via http://scientificdata.isa-explorer.org). Many
publishers have invested in technology to automatically deposit small datasets
shared as supplementary information files with journals articles into figshare to
increase their accessibility and potential for reuse.

5.3 Research Data Tools and Services

Publishers are diversifying the products and services they provide to support
researchers practice reproducible research (Inchcoombe 2017). The largest scholarly
publisher Elsevier (RELX Group), for example, has acquired software used by

Publishers’ Responsibilities in Promoting Data Quality and Reproducibility 335

https://www.re3data.org/
https://www.re3data.org/
https://fairsharing.org/
https://fairsharing.org/
https://repositoryfinder.datacite.org/
https://repositoryfinder.datacite.org/
http://scientificdata.isa-explorer.org


researchers before they submit work to journals, such as the electronic lab notebook
Hivebench. Better connecting scholarly communication infrastructure with
researchers’ workflow and research tools is recognised by publishers as a way to
promote transparency and reproducibility, and publishers are increasingly working
more closely with research workflow tools (Hrynaszkiewicz et al. 2014).

While “organising data in a presentable and useful way” is a key barrier to data
sharing (Stuart et al. 2018), data curation as a distinct profession, skill or activity has
tended to be an undervalued and under-resourced in scholarly research (Leonelli
2016). Springer Nature, in 2018, launched a Research Data Support service (https://
www.springernature.com/gp/authors/research-data/research-data-support) that
provides data deposition and curation support for researchers who need assistance
from professional editors in sharing data supporting their publications. Use of this
service has been associated with increased metadata quality (Grant et al. 2019; Smith
et al. 2018). Publishers, including Springer Nature and Elsevier, provide academic
training courses in research data management for research institutions. Some data
repositories, such as Dryad, offer metadata curation, and researchers can also often
access training and support from their institutions and other third parties such as the
Digital Curation Centre.

5.4 Making Research Data Easier to Find

Publishing platforms can promote reproducibility and provenance tracking by
improving the connections between research papers and data and materials in
repositories. Ensuring links between journal articles and datasets are present, func-
tional and accurate is technologically simple, but can be procedurally challenging to
implement when multiple databases are involved. Connecting published articles and
research data in a standardised manner across multiple publishing platforms and data
repositories, in a dynamic and universally adoptable manner, is highly desirable.
This is the aim of a collaborative project between publishers and other scholarly
infrastructure providers such as CrossRef, DataCite and OpenAIRE. This Scholarly
Link Exchange (or, “Scholix”) project enables information on links between articles
and data to be shared between all publishers and repositories in a unified manner
(Burton et al. 2017). This approach, which publishers are important implementers of,
means readers accessing articles on a publisher platform or literature database or data
repository, such as Science Direct or EU PubMed Central or Dryad, will be provided
with contemporaneous and dynamic information on datasets that are linked to
articles in other journals or databases and vice versa.

6 Enhancing Incentives

Publications in peer-reviewed journals, and citations, are established mechanisms for
assigning credit for scholarly contributions and for researchers and institutions to
provide evidence for their research outputs and impact. Publishers can offer
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incentives to promote transparency by providing opportunities for additional articles
and citations and new forms of incentive such as digital badges.

6.1 New Types of Journal and Journal Article

In the last 10 years, more journals, and types of journal article, have emerged that
publish articles that describe specific parts of a research project. The print-biased
format of traditional research articles does not always provide sufficient space to
communicate all aspects of a research project. These new publications include
journals that specialise in publishing articles that describe datasets or software
(code), methods or protocols. Established journals have also introduced new article
types that describe data, software, methods or protocols (Table 5).

Of these journals and article types, data journals and data papers are the most
common. Data papers do not include a Results or Conclusion, like traditional
research papers. They generally describe a publicly available dataset in sufficient
detail so that another researcher can find, understand and reuse the data. Data
journals generally do not publish raw data, but publish peer-reviewed papers that
describe datasets (Hrynaszkiewicz and Shintani 2014). Data papers often include
more detailed or technical information that may be excluded from traditional
research papers, or which might only appear as supplementary files in traditional
research papers. Data papers can both accompany traditional research papers and be
independent articles that enable the publication of important datasets and databases
that would not be considered as a traditional publication.

Papers published in data journals attract citations. While the number of articles
published in data journals is steadily growing, they, however, represent a small
proportion of the published literature overall (Berghmans et al. 2017).

Table 5 Examples of data, software, methods and protocol journals

Type of journal Journal Publisher

Data journal Scientific Data Springer Nature

Data journal Earth Systems Science Data Copernicus

Data journal Data in Brief Elsevier

Data journal GigaScience Oxford University Press/BGI

Software journal Journal of Open Research Software Ubiquity Press

Software journal Source Code for Biology and Medicine Springer Nature

Software journal SoftwareX Elsevier

Protocol journal Nature Protocols Springer Nature

Protocol journal Current Protocols Wiley

Methods journal Nature Methods Springer Nature

Methods journal MethodsX Elsevier
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6.2 Data and Software Citation

Research data, software and other research outputs, when published in digital
repositories, can be assigned Digital Object Identifiers (DOIs), like research papers
and chapters, enabling these research outputs to be individually discovered and cited
and their citations measured in the same way.

Citing data and software promotes reproducibility by enabling linking and prov-
enance tracking of research outputs. Papers can be persistently linked to the version
(s) of data and code that were used or generated by the experiments they describe.
Data citation can also provide more specific evidence for claims in papers, when
those claims are based on published data. Citation of data and software is
encouraged, and in some case required, as part of many journals’ data sharing and
reproducible research policies (Hrynaszkiewicz et al. 2017a). Some funding
agencies, such as the National Science Foundation in the USA, encourage researcher
to list datasets and software (in addition to traditional publications) as part of their
bibliographic sketches (Piwowar 2013).

From the researcher’s (author’s) perspective, citing data and software in reference
lists is the same as citing journal articles and book chapters are cited. Several datasets
are cited in this chapter, such as Smith et al. (Smith et al. 2018), and software can,
similarly, also be cited when it is deposited in repositories that assign DOIs. Zenodo
and figshare are commonly recommended for depositing code and software so that
they can be cited.

To promote data citation and to enable data citations and links to be more visible
to readers, publishers have implemented changes to the structure of published
content (the XML underlying the digital version of journal articles) (Cousijn et al.
2017, 2018). Publishers and other scholarly infrastructure providers, such as
DataCite and CrossRef (member organisations that generate DOIs for digital
research outputs), are collaborating to enable data citation to be implemented and
practised consistently, regardless of where researchers publish. Data citations, in
article reference lists (bibliographies), have historically appeared in a small propor-
tion of the published literature, but data citations have been increasing year-on-year
(Garza and Fenner 2018). Researchers have indicated that they value the credit they
receive through data citations, in some cases equally to the credit they receive from
citations to their papers (Science et al. 2017).

6.3 Digital Badges for Transparency: A New Type of Incentive

The Center for Open Science offers digital badges that are displayed on published
articles to highlight, or reward, papers where the data and materials are openly
available and for studies that are pre-registered. Badges signal to the reader that
the content has been made available and certify its accessibility in a persistent
location. More than 40 journals, in 2018, offered or were experimenting with the
award of badges to promote transparency (Blohowiak 2013). The use of digital
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badges is most prolific in psychology and human behavioural research journals, but
they are also used in some microbiology, primatology and geoscience journals.

Awarding digital badges to authors has been associated with increased rates of
data sharing by authors. When the journal Psychological Science (PSCI) introduced
badges for articles with open data, the proportion of articles with open data increased
(Fig. 3), compared to previous levels of data sharing in the journal. Data sharing also
increased in the journal compared to other psychology journals (Munafò et al. 2017;
Kidwell et al. 2016).

Digital badges being an effective incentive for data sharing has also been
confirmed in a systematic review (Rowhani-Farid et al. 2017). The badges that are
awarded by the journal Biostatistics’ Associate Editor for reproducibility have also
been associated with increased data sharing, although, in the same study, badges did
not have an impact on the sharing of code (Rowhani-Farid and Barnett 2018).

Badges are usually awarded by authors self-disclosing information or they are
awarded as part of the peer-review process. Another method of awarding badges
adopted by BMC Microbiology involves the data availability statements of each
paper being assessed, independently, by the publisher (Springer Nature 2018).

Fig. 3 Percentage of articles reporting open data by half year by journal. Darker line indicates
Psychological Science, and dotted red line indicates when badges were introduced in Psychological
Science and none of the comparison journals. Figure and legend reproduced from Kidwell et al.
(2016)
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Box 1 Practical Recommendations for Researchers to Support
the Publication of Reproducible Research
Before You Carry Out Your Research
• Check if your institution or employer, funding agency and target journals

have policies on sharing and managing research data, materials and code or
more broadly on reproducibility and open science.
– Seek advice on compliance with these policies, and support including

formal training, where needed.
– Note that journal policies on data sharing are generally agnostic of

whether research is industry or academically sponsored.
• Consider how you will store and manage your data and other research

outputs and plan accordingly, including whether additional or specific
funding is required to cover associated costs.
– Preparing a Data Management Plan (DMP) is recommended and is often

required under funding agency and institutional policies. Free tools such
as https://dmponline.dcc.ac.uk/ can assist in creating DMPs.

• Determine if there are standards and expectations, and existing infrastruc-
ture such as data repositories, for sharing data in your discipline.
– Use resources such as https://fairsharing.org/ to explore standards,

policies, databases and reporting guidelines.
– Establish if there are existing repositories for the type of data you

generate. Where they exist use discipline-specific repositories for your
data, and general repositories for other data types.

• Familiarise yourself with tools that enable reproducibility, and version
control, particularly for computational work (Markowetz 2015).

• Where appropriate databases exist, consider preregistration of your study
(for clinical trials registration in a compliant database is mandatory) as a
means to reduce the potential for bias in analyses.

• For clinical studies in particular, publish your study protocol as a peer-
reviewed article, or at minimum be prepared to share it with journal editors
and peer reviewers.
– Free tools such as https://www.nature.com/protocolexchange/ and

https://www.protocols.io/ can be used to share methodological
knowledge.

• If your target journal(s) offer them, consider preparing a registered report.

When Preparing to Submit Your Research Results to a Journal
• Register for an ORCID identifier and encourage your co-authors to do

the same.
• Publish a preprint of your paper in a repository such as bioRxiv, enabling

the community to give you feedback on your work and for you to assert
ownership and claim credit for you work early.

(continued)
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Box 1 (continued)
• Prepare your data and code for deposition in a repository, and make these

available to editors and peer reviewers.
– Use repositories rather than supplementary information files for your

datasets and code.
• Consider publishing data papers, software papers or methods-focused

papers to complement your traditional research papers, particularly if
detailed information that enables understanding and reuse your research
does not form part of your traditional papers.

• If the results of your research are inconclusive and show no difference
between comparison groups (“negative results”), publish them. Many
journals consider such papers.

• Always include clear statements in your publications about the availability
of research data and code generated or utilised by your research.
– If there are legitimate restrictions on the availability and reuse of your

data, explain them in your data availability statements.
– Wherever possible, include links to supporting datasets in your

publications – this supports reproducibility and is associated with
increased citations to papers.

• Be prepared to share with editors and peer reviewers any materials
supporting your papers that might be needed to verify, replicate or repro-
duce the results.
– Many repositories enable data to be shared privately before publication

and in a way that protects peer reviewers’ anonymity (where required).
• Cite, in your reference lists and bibliographies, any persistent, publicly

available datasets that were generated or reused by your research.

After Publication of Your Research
• Be prepared to respond to reasonable requests from other scientists to reuse

your data.
– Non-compliance with data sharing policies of journals can lead to

corrections, expressions of concern or retractions of papers.
• Try to view the identification of honest errors in published work – yours

and others – as a positive part of the self-correcting nature of science.
• Remember working transparently and reproducibly is beneficial to your

own reputation, productivity and impact as a researcher, as well as being
beneficial to science and society (Markowetz 2015).
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7 Making Research Publishing More Open and Accessible

The sixth and final area in which publisher can promote transparency relates to how
open and accessible publishers are as organisations. This refers firstly to the content
publishers distribute and secondly to the accessibility of other information and
resources from publishers.

7.1 Open Access and Licencing Research for Reuse

Publishing more research open access, so that papers are freely and immediately
available online, is an obvious means to increase transparency. The proportion of the
scholarly literature that is published open access, each year, is increasing by
10–15%. Open access accounted for 17% of published articles in 2015 (Johnson
et al. 2017), and the two largest journals in the world – Scientific Reports and PLOS
One – are open-access journals.

Open-access publishing means more than access to research; it is also about
promoting free reuse and redistribution of research, through permissive copyright
licences (Suber 2012). Open-access journals and articles are typically published
under Creative Commons attribution licences, such as CC BY, which means that the
work can be copied, distributed, modified and adapted freely, by anyone, provided
the original authors are attributed (the figures in this chapter are examples of this
practice).

Publishing research under CC BY, or equivalent copyright licences, is important
for promoting reproducibility of research because it enables published research
outputs to be reused efficiently, by humans and machines. With this approach, the
pace of research need not be slowed by the need to negotiate reuse rights and
agreements with researchers and institutions. Meanwhile scholarly norms of
acknowledging previous work (through citation) and legal requirements for attribu-
tion in copyright will ensure that researchers are credited for their contributions
(Hrynaszkiewicz and Cockerill 2012).

Reuse of the research literature is essential for text and data mining research, and
this kind of research can progress more efficiently with unrestricted access to and
reuse of the published literature. Publishers can enable the reuse of research content
published in subscription and open-access journals with text and data mining
policies and agreements. Publishers typically permit academic researchers to
programmatically access their publications, such as through secure content applica-
tion programming interfaces (APIs), for text and data mining research (Text and
Data Mining – Springer; Text and Data Mining Policy – Elsevier).

7.2 Open Publisher (Meta)Data

For other kinds of content, including research data, publishers can promote ease of
access and reuse by applying and setting standards for content licences that enable
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reuse easily. In 2006 multiple publishers signed a joint statement agreeing not to take
copyright in research data (STM, ALPSP 2006). Publishers have also promoted the
use of liberal, public domain legal tools for research data and metadata. The
publisher BMC introduced, in 2013, a default policy whereby any data published
in their more than 250 journals would be available in the public domain, under the
Creative Commons CC0 waiver (Hrynaszkiewicz et al. 2013). Publishers can also
make data about their content catalogues (metadata) openly available. Springer
Nature’s SciGraph, for example, is a linked open data platform for the scholarly
domain and collates metadata from funders, research projects, conferences,
affiliations and publications (SciGraph). Many publishers also make the
bibliographies (reference lists) of all their publications, subscription and open
access, available openly as “open citations” (Shotton 2013; I4OC).

Beyond published articles, journals and associated metadata, publishers can share
other information openly. This includes survey findings (Table 1) and the results of
projects to improve transparency reproducibility – such as around data sharing
policies (Hrynaszkiewicz et al. 2017a) and research data curation (Smith et al.
2018). Resources produced and curated by publishers can also be made available
to the wider community (such as Scientific Data 2019).

7.3 Open for Collaboration

Publishers can promote transparency through collaboration. The biggest policy and
infrastructural challenges that enable the publication of more reproducible research
can only be tackled by multiple publishers collaborating as an industry and collabo-
ration with other organisations that support the conduct and communication of
research – repositories, institutions and persistent identifier providers. Progress
resulting from such collaborations has been seen in data citation (Cousijn et al.
2017), data policy standardisation (Hrynaszkiewicz et al. 2017b), reporting
standards to enhance reproducibility (McNutt 2014) and provenance tracking of
research outputs and researchers, through persistent identification initiatives such as
ORCID (https://orcid.org/organizations/publishers/best-practices). All of which,
combined, help publishers and the wider research community to make practical
improvements to the communication of research that support improved data quality
and reproducibility.

7.3.1 The Future of Scholarly Communication?
In some respects the future of scholarly communication is already here, with
dynamic, reproducible papers (Lewis et al. 2018), workflow publication, data inte-
gration and interactive data, figures and code all possible, albeit at a relatively small
scale. However, these innovations remain highly unevenly distributed, and the
majority of published scholarly articles remain largely static objects, with the PDF
format remaining popular with many readers. Like most scientific advances, prog-
ress in scholarly communication tends not to be made through giant leaps of progress
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but by slow, steady, incremental improvements. However, numerous major
publishers have expressed strong support for open science and are introducing
practical measures to introduce and strengthen policies on transparency of all
research outputs, as a prerequisite to improving reproducibility. Researchers should
expect continued growth in transparency policies of journals and be prepared for
demands for more transparency in the reporting of their research (see Box 1 for
practical suggestions for researchers). Increasing computerisation and machine
readability of papers, with integration of data and code and enhancement of metadata
increasing, will promote reproducibility and new forms of research quality
assessment. This will help the research community assess individual research
projects more specifically than the inappropriate journal-based measure of the
impact factor. Large publishers will continue to diversify the types of content they
publish and diversify their businesses, evolving into service providers for
researchers and institutions and including content discovery, research metrics,
research tools, training and analytics in their activities alongside publishing services.
Technology and services are just part of implementing reproducible research, and
cultural and behavioural change – and demonstrating value and impact of reproduc-
ible research – will continue to be incentivised with policies of all stakeholders in
research. Monitoring compliance with transparency and reproducibility policies
remains a challenge, but increasing standardisation of policies will enable economies
of scale in monitoring compliance.
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Abstract
Quality research data are essential for quality decision-making and thus for
unlocking true innovation potential to ultimately help address unmet medical
needs.

The factors influencing quality are diverse. They depend on institution type
and experiment type and can be of both technical and cultural nature. A well-
thought-out governance mechanism will help understand, monitor, and control
research data quality in a research institution.

In this chapter we provide practical guidance for simple, effective, and sus-
tainable quality governance, tailored to the needs of an organization performing
nonregulated preclinical research and owned by all stakeholders.

GLP regulations have been developed as a managerial framework under which
nonclinical safety testing of pharmaceutical and other products should be
conducted. One could argue whether these regulations should be applied to all
nonclinical biomedical studies. However, the extensive technical requirements of
GLP may not always be fit to the wide variety of studies outside the safety arena
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and may be seen as overly prescriptive and bureaucratic. In addition, GLP
regulations do not take into account scientific excellence in terms of study design
or adequacy of analytical methods. For these reasons and in order to allow a lean
and fit for purpose approach, the content of this chapter is independent from GLP.
Nevertheless, certain topics covered by GLP can be seen as valuable across
biomedical research. Examples are focus on transparency and the importance of
clear roles and responsibilities for different functions participating in a study.

Keywords
Change management · Fit for purpose approach · Quality governance · Research
data quality · Sustainability

1 What Is Quality Governance?

The term governance is derived from the Greek verb kubernaein [kubernáo] (mean-
ing to steer), and its first metaphorical use (to steer people) is attributed to Plato.
Subsequently the term gave rise to the Latin verb gubernare, and from there it was
taken over in different languages. It is only since the 1990s that the term governance
is used in a broad sense encompassing different types of activities in a wide range of
public and private institutions and at different levels (European Commission, http://
ec.europa.eu/governance/docs/doc5_fr.pdf).

As a result of the broad application of the term governance, there are multiple
definitions, among which the following is a good example (http://www.
businessdictionary.com/definition/governance.html): “Establishment of policies,
and continuous monitoring of their proper implementation, by the members of the
governing body of an organization. It includes the mechanisms required to balance
the powers of the members (with the associated accountability), and their primary
duty of enhancing the prosperity and viability of the organization.”

In simple terms, governance is (a) a means to monitor whether you are on a good
path to achieve the intended outcomes and (b) a means to steer in the right direction
so that you proactively prevent risks turning into issues. It is almost like looking in
the mirror every morning and making sure you look ok for whatever your plans are
that day, or like watching your diet and getting regular exercise in order to keep your
cholesterol levels under control.

How does this translate into quality governance? Quality simply means fitness for
purpose; in other words the end product of your work should be fit for the purpose it
is meant to serve. In experimental pharmacology, this means that your experimental
outcomes should be adequate for supporting conclusions and decisions such as on
the validity of a molecular target for a novel treatment approach, on the generation of
a mode of action hypothesis for a new drug, or on the safety profile of a pharmaceu-
tical ingredient. The different activities you undertake from planning of your experi-
ment, generating the raw data, processing these data to ultimately reporting
experimental outcomes and conclusions should be free from bias and should be
documented in a way that allows full reconstruction of the experiment.
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Quality governance in the context of this book means potential ways in which
institutions can monitor research data quality over time and have a mechanism in
place to detect and to deal with signals of drift. The purpose and concept of quality
governance can be visualized such as in Fig. 1.

The definition of quality governance implies that, although very important,
having policies or guidelines for good research practices is not sufficient. Such
documents can be seen as an important building block for good quality research
data. However, policies or guidelines will not reach their full impact potential and
will not be sustainable over time when the monitoring component of governance is
missing. Three aspects of governance are equally important: (1) there needs to be a
mechanism to check whether people are applying the guidelines, (2) there needs to
be a mechanism to make sure the guidelines remain adequate over time, and (3) there
needs to be a mechanism to take the right actions when deviations are seen in (1) and
(2). Having these three aspects of governance in place is expected to increase the
likelihood of long-term sustainability and full engagement by those who are
expected to apply the guidelines.

Common to all effective quality governance systems is the attention to both
cultural (acceptance, engagement, sense of responsibility, etc.) and technical
(guidelines, procedures, equipment, research data storage, etc.) aspects of quality.
It is definitely worth investing time in effective quality governance system as it will
help achieve quality research data (data fit for their purpose). Quality data lead to
quality decision-making (for acceptance of the best publications or for grants to be

Data 
Quality 

Not acceptable

Fit for purpose

Over-engineering

Time

NoNoNoNoNoNoNoNoNNNN ttttttttttt acacacacacacacaccaa cecececececececeeeptptptptptptptptptptp abababababababababababllllllleeeeeeeeeee

Fit for purpose

Fig. 1 A simple visualization of the purpose and concept of quality governance. Quality gover-
nance is the answer to the question: “How do I get in the green zone and stay there?” Each star
represents a point in time where the organization reflects on or measures its quality level against
what is considered fit for purpose. Over time, the measured outcomes will likely change, and when
the outcome is in the “not acceptable” or “overengineering” zone, actions need to be taken to move
back into the green fit for purpose zone. The curves represent theoretical examples of measured
quality levels over time. The lower curve reflects an institution that has taken small continuous
improvement steps to move data quality from not acceptable to fit for purpose level. The upper
curve represents an institution that at a certain point in time finds itself “overengineering” and
course-corrects to an appropriate level of quality
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given to the best project proposals or for investing in the best active pharmaceutical
ingredient). All together quality research data will ultimately lead to unlocking the
best possible innovation potential in order to help address unmet medical needs
(Fig. 2).

The size and type of organization (university, biotech, pharma, contract research,
etc.) and the type of work that is being conducted (exploratory, confirmatory,
in vivo, in vitro, etc.) will determine the more specific quality governance needs.
The next parts of this chapter are meant to offer a stepwise and practical approach to
install an effective and tailor-made quality governance approach.

2 Looking in the Quality Mirror (How to Define the Green
Zone)

How do you know where your lab or your institution is positioned respective to the
different data quality zones schematically introduced in Fig. 1? The first thing to do
is to define what success means in your specific situation. In quality management
terms, success is about making sure you have controlled the risks that matter to your
organization. Therefore, one may start with clearly defining the risks that matter.
“What is at stake?” is a good question to trigger this thinking.

2.1 What Is at Stake?

Risks can vary according to the organization type. However, the following risks are
generally recognized for organizations conducting biomedical research:

(a) First and foremost comes the risk to patients’ safety. Poor research data quality
can have dramatic consequences as exemplified in 2015 in Rennes, France,
where a first-in-human trail was conducted by contract research organization
Biotrial on behalf of Portuguese pharmaceutical company Bial. During the trial,
six healthy volunteers were hospitalized with severe neurological injuries after
receiving an increased dose of the investigational compound. One patient died
as a result (Regulatory Focus TM News articles 2016: https://www.raps.org/
regulatory-focus%E2%84%A2/news-articles/2016/5/ema-begins-review-of-
first-in-human-trial-safety-following-patient-death). The assigned investigation
committee concluded that several errors and mistranslations from source

Fig. 2 Quality research data leads to quality decision-making which in its turn is required for
unlocking optimal innovation potential
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documents were present in the IB that made it difficult to understand. The
committee recommended enhanced data transparency and sufficiently complete
preclinical safety studies (Schofield 2016).

(b) Another important risk in preclinical research is related to animal welfare.
Animals should be treated humanely, and care should be taken that animal
experiments are well designed and meticulously performed and reported to
answer specific questions that cannot be answered by other means. Aspects of
animal care and use can also have direct impact on research results. This topic is
discussed in detail in chapter “Good Research Practice: Lessons from Animal
Care and Use”.

(c) There can be damage to public trust and reputation of the institution and/or
individual scientist, for example, in case a publication is retracted. Because
retraction is often perceived as an indication of wrongdoing (although this is not
always the case), many researchers are understandably sensitive when their
paper(s) is questioned (Brainard 2018). Improved oversight at a growing num-
ber of journals is thought to be the prime factor in the rise of annual retractions.
Extra vigilance is required in case of collaborations between multiple labs or in
case of delegation of study conduct, for example, to junior staff.

(d) Business risks may vary depending on the type of organization. The immediate
negative financial consequences of using the non-robust methods (e.g., poor or
failing controls) are unnecessary repeats and overdue timelines. More delayed
consequences can go as far as missed collaboration opportunities. Another
example can be a failure to obtain grant approvals when quality criteria of
funders are not met. For biotechnological or pharmaceutical companies, there
is the risk of inadequate decision-making based on poor quality data and thus
investing in assets with limited value, delaying the development of truly inno-
vative solutions for patients in need.

(e) In terms of intellectual property, insufficient data reconstruction can lead to
refusal, unenforceability, or other loss of patent rights (Quinn 2017). In a case of
a patent attack, it is essential to have comprehensive documentation of research
data in order to defend your case in court, potentially many years after the tests
were performed. Also, expert scientists are consulted in court and may look for
potential bias in your research data.

(f) Pharmacology studies, with the exception of certain safety pharmacology stud-
ies, are not performed according to GLP regulations (OECD Principles of Good
Laboratory Practices as revised in 1997 Organisation for Economic
Co-operation and Development. ENV/MC/CHEM (98)17).

A large part of regulatory submission files for new drug approvals therefore
consist of non-GLP studies. It is, however, important to realize that, also for
non-GLP studies, the regulators do expect that necessary measures are taken to
have trustworthy, unbiased outcomes and that research data are retrievable on
demand. The Japanese regulators are particularly very strict when it comes to
availability of data (Desai et al. 2018). Regulators have the authorization by law
to look into your research data. They will look for data traceability and integrity.
If identified, irregularities can affect the review and approval of regulatory
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submissions and may lead to regulatory actions that go beyond the product/
submission involved.

The above-mentioned risks are meant as examples, and the list is certainly not
meant to be all inclusive.

When considering what is at stake for your specific organization, you may think
just as well in terms of opportunities. As the next step, similar to developing
mitigations for potential risks, you can then develop a plan to maximize the benefits
or success of the opportunities you have identified, for example, enhancing the
likelihood of being seen as the best collaboration partner, getting the next grant, or
having the next publication accepted.

2.2 What Do You Do to Protect and Maximize Your Stakes?

When you have a clear view on the risks (and opportunities) in your organization, the
next step is to start thinking about what it is that affects those stakes; in other words,
what can go wrong so that your key stakes are affected. Or, looking from a positive
side, what can be done to maximize the identified opportunities?

Depending on the size and complexity of your organization, the approach to this
exercise may vary. In smaller organizations, you may get quick answers from a
limited number of subject matter experts. However, in larger organizations, it may
take more time to get the full picture. In order to get the best possible understanding
about quality-related factors that influence your identified risks, it is recommended to
perform a combination of interviews and reviews of research data and documents
such as protocols and reports. Most often, reviews will help you find gaps, and
interviews will help you define root causes.

Since you will gather a lot of information during this exercise, it is important to be
well prepared, and it is advisable to define a structure for collecting and analyzing
your findings.

When reviewing research data, you can group your findings in categories such as,
for example:

(a) Data storage: Proper storage of research data can be considered as a way to
safeguard your research investment. Your data may need to be accessed in the
future to explain or augment subsequent research, or other researchers may wish
to evaluate or use the results of your research. Some situations or practices may
result in inability to retrieve data, for example, storage of electronic data in
personal folders or on non-networked instrument computers that are only
accessible to the scientist involved and temporary researchers coming and
going without being trained on data storage practices.

(b) Data retrieval: It is expected that there is a way to attribute reported outcomes
(in study reports and publications) and conclusions to experimental data. An
easy solution is to assign to all experiments a unique identification number from
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the planning phase onwards. This unique number can then be used in all
subsequent recordings related to data capture, processing, and reporting.

(c) Data reconstruction: It is expected that an independent person is able to
reconstruct the presented graphs, figures, and conclusions with the information
in the research data records. If a scientist leaves the institution, colleagues
should be able to reconstruct his/her research outcomes. Practices that may
hinder the reconstructions are, for example, missing essential information such
as timepoints of blood collection, missing details on calculations, or missing
batch ID’s of test substances.

(d) Risk for bias: According to the American National Standard (T1.523-2001), the
definition of bias is as follows: “Data (raw data, processed data and reported
data) should be unchanged from its source and should not be accidentally or
maliciously modified, altered or destroyed”. Bias can occur in data collection,
data analysis, interpretation, and publication which can cause false conclusions.
Bias can be either intentional or unintentional (Simundic 2013). Intention to
introduce bias into someone’s research is immoral. Nevertheless, considering
the possible consequences of a biased research, it is almost equally irresponsible
to conduct and publish a biased research unintentionally. Common sources of
bias for experiments (see chapter “Resolving the Tension Between Exploration
and Confirmation in Preclinical Biomedical Research”) are lack of upfront
defined test acceptance criteria or criteria and documentation for inclusion/
exclusion of data points or test replicates, use of non-robust assays, or multiple
manual copy-paste steps without quality control checks. Specifically, for animal
intervention studies, selection, detection, and performance bias are commonly
discussed, and the SYRCLE risk of bias tool has been developed to help assess
methodological quality (Hooijmans et al. 2014). It is strongly advised to involve
experts for statistical analysis as early as the experimental planning phase.
Obviously, every study has its confounding variables and limitations that cannot
completely be avoided. However, awareness and full transparency on these
known limitations is important.

(e) Review, sign off, and IP protection: Entry of research data in (electronic) lab
notebooks and where applicable (for intellectual property reasons) witnessing of
experiments is expected to occur in a timely manner (e.g., within 1 month of
experimental conduct).

Likewise, when conducting interviews, you may want to consider having some
general questions upfront to trigger the thinking and facilitate obtaining information
that helps define route causes and thus focus areas for later actions. Some examples:

• Culture and communication
– How is the rewarding system set up and how is it perceived? Is there a feeling

that “truth seeking” behavior and good science is rewarded and seen as a
success rather than positive experimental outcomes or artificial milestones?
Which are the positive and negative incentives that people in this
lab/institution experience?

– How are new employees trained on the importance of quality?
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– Where can employees find information on quality expectations?
– Does leadership enforce the importance of quality? Is leadership perceived to

“walk the walk and talk the talk”?
– Is there a mechanism to prevent conflict of interest? Are there any undue

commercial, financial, or other pressures and influences that may adversely
affect the quality of research work?

• Management of resources
– Is there sufficient personnel with the necessary competence, skills, and

qualifications?
– Are facilities and equipment suitable to deliver valid results? How is this being

monitored?
– Do computerized systems ensure integrity of data?

• Data storage
– Is it clear to employees which research data to store?
– Is it clear to employees where to store research data?
– Are research data stored in a safe environment?

• Data retrieval
– How easy is it to retrieve data from an experiment you performed last month?

1 year ago? 5 years ago?
– How easy is it to retrieve data from an experiment conducted by your peer?
– How easy is it to retrieve data from an experiment conducted by the postdoc

who left 2 years ago?
• Data reconstruction

– Is it clear to employees to which level of detail individual experiments should
be recorded and reported?

– Is there a process for review and approval of reports or publications?
– During data reviews, is there attention to the ability to reconstruct experimen-

tal outcomes by following the data chain starting from protocol and raw data
over processed data to reported data?

• Bias prevention
– In study reports, is it common practice to be transparent about the number of

test repeats and their outcomes regardless of whether the outcome was positive
or negative?

– In study reports, is it common practice to be transparent about statistical
power, known limitations of scientific or statistical methods, etc.?

– Are biostatistical experts consulted during study setup, data analysis, and
reporting in order to ensure adequate power calculations, use of correct
statistical methods, and awareness on limitations of certain methods?

– Is there a process for review and approval of reports and publications?
– Is there a mechanism to raise, review, and act upon any potential shortcomings

in responsible conduct of research?
• Collaborations

– Is it common practice to communicate with collaborators/partners/
subcontractors on research data quality expectations?
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Performing a combination of research data reviews and interviews will require
some time investments but will lead to a good understanding of how your current
practices affect what is at stake for your specific institution. Oftentimes, while
performing this exercise, the root causes for the identified gaps will become clear.
For example, people store their research data on personal drives because there are no
agreements or IT solutions foreseen for central data storage, or data reconstruction is
difficult because new employees are not being systematically mentored or trained on
why this is important and what level of documentation is expected.

Good reading material that links in with this chapter is ICHQ9 (https://www.ich.
org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_
Guideline.pdf), a comprehensive guideline on quality risk management including
principles, process, tools, and examples.

3 Fixing Your Quality Image (How to Get in the Green Zone)

After having looked in the quality mirror, you can ask yourself: “Do I like what I
see?”

Like many things in life, quality is to be considered a journey rather than a
destination and requires a continued level of attention. Therefore, it is very likely that
your assessment outcome indicates that small or large adjustments are advisable.

It is important to realize that quality cannot be the responsibility of one single
person or an isolated group of quality professionals in your organization. Quality is
really everyone’s responsibility and should be embedded in the DNA of both people
and processes. The right people need to be involved in order to have true impact.

Therefore, after analyzing your quality image, it is important to articulate very
clearly what you see, why improvement is needed, and who needs to get involved.
Also, one should not forget to bring a well-balanced message, adapted to the target
audience, and remember to emphasize what is already good.

Another common mistake is to think that research quality principles can be
installed just by writing a policy, generating procedures and guidelines, and
organizing training sessions, so everyone knows what to do. This may look good
on paper and may even be designed to be lean and fit-for-purpose. However,
building quality into the everyday activities and at all levels requires to go beyond
work instructions and policies. It is the emotional connection that is the basis of
success (Fig. 3) since this will make sure that quality is built into the thinking and
actions of everyone involved. One can never foresee all potential situations and
exceptions in a procedure, but having people’s mindset right will trigger the right
behavior in any situation.

Here are some hints and tips and practical examples that have been shown to be
well received:
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– Use positive language

Positive communication is key to obtain engagement. Phrases such as “How can
we set ourselves up for success?” or “How can we increase our potential for
innovation?” are much more effective than “We need to follow these rules for data
recording.”

– Use the scientists’ skills

Scientists are excellent problem solvers. This skill can also do magic beyond the
scientific area of expertise such as on quality-related topics. The only trigger that is
needed for the scientist is the awareness that there is a situation that needs to be
addressed. In this context, quality professionals are advised not to impose solutions
on scientists, especially when these solutions may be perceived with even a tiny
piece of increased bureaucracy. And, in the end, scientists usually know best what
works well in their environment.

Leadership
emphasis

Interactive
training

sessions

Solutions
created by

scientists for
scientists

Emotional
connection

matters

Feedback on
good

practices

Celebrate
and reward

Thought
provoking
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Fig. 3 Schematic representation of emotional connection elements that are relevant to consider
while enhancing quality approaches. Building quality into the everyday activities and at all levels
requires emotional connection. The basis of a healthy research climate is people’s mindset, as the
right mindset will trigger the right behavior in any situation
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– Use catchy visuals or analogies

As an example, a campaign appealing to scientist’s creativity can result in very
engaging visuals that can be displayed in labs and corridors (example in Fig. 4) and
will become the talk of the town. Positivity, creativity, and fun are key elements in
building a research quality culture.

– Support from the top

The first question you will be asked by your institutions’ leaders is “Why is this
important?”. You need a clear outline of what is at stake, what you learned during the
current state analysis, and where you see gaps and a plan for change. It is best to
include real examples of what can go wrong, what is currently already working well,
and where improvement is still possible. Without support of the institutions’ top
leadership, the next steps will be extremely difficult or even impossible.

Fig. 4 Example of utilization of visuals and analogies to research data quality. This example was
derived from a campaign at Janssen Pharmaceutica N.V., appealing to scientists’ creativity to
visualize quality. It is meant to trigger thinking on appropriateness and best practices for outlier
exclusion
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– Choose your allies – and be inclusive

It is highly likely that during your initial analysis, you have met individuals who
were well aware of (parts of) the gaps and have shown interest and energy to
participate in finding solutions. Chances are high that they have already started
taking steps toward improvement. It is key to involve these people as you move on.

It is also likely that your initial analysis showed that, in certain parts of the
organization, people have already put in place solutions for gaps that still exist in
other parts of the organization. These can serve as best practice examples going
forward.

Also, you may have come across some very critical people, especially those who
are afraid of additional workload and bureaucracy. Although this may sound coun-
terintuitive, it is of high value to also include this type of people in your team or to
reach out to them at regular intervals with proposed (draft) solutions and ask for their
input.

Finally, since the gaps you have discovered may be of diverse nature, it is
important to involve experts from other disciplines such as biostatisticians, commu-
nication professionals, patent attorneys, procurement experts, IT experts, etc.

– Plan and prioritize

The gaps, best practices, and route causes defined during the initial analysis will
be the starting point for change. Remember that route causes are not necessarily
always of technical nature. Cultural habits or assumptions may be equally or even
more important and will often take more time and effort to resolve.

It is also important to try not to change everything at once. It is better to take small
incremental steps and focus on implementing some quick wins first.

Apart from prioritizing the topics that need to be tackled, it is good practice to
define roles and responsibilities as well as a communication plan. For a large
organization, it may be helpful to agree on a governance model for which an
example is given in Fig. 5.

Change is never an easy journey, and awareness on change management
principles will be helpful to achieve the ultimate goal. On the web there is a lot of
useful material on change management, such as the Kotter’s 8-step change model
(https://www.mindtools.com/pages/article/newPPM_82.htm) that explains the hard
work required to change an organization successfully. Other useful references are the
RQA (Research Quality Association) booklet “Quality in research: guidelines for
working in non-regulated research” that can be purchased via the RQA website
(https://www.therqa.com/resources/publications/booklets/quality-in-research-book
let/) and the RQA quality systems guide that can be downloaded for free (https://
www.therqa.com/resources/publications/booklets/Quality_Systems_Guide/). Care-
ful planning and building the proper foundations is key. Equally important is
creating a sense of urgency and effective communication (real examples, storytell-
ing). Having some quick wins will help to build on the momentum and increase
enthusiasm.
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– Keep it simple

Try not to make guidelines too descriptive or specific and rather go with general
guidance. For example, it is essential that equipment is suitable for intended use and
that experimental records provide sufficient details to enable reconstruction. What
exactly this means depends on the type of equipment, for what purpose it is used, and
what type of experiment is conducted. General templates to document equipment
maintenance or reporting templates may be helpful tools for scientists; however, it is
key not to go in too much detail when specifying expectations.

– Make training fun

Interactive and fun activities during training sessions and hands-on workshops are
generally well appreciated by the scientists. As an example, a quiz can be built into
the training session during which scientists can work in small teams and get a small
prize at the end of the session.

Senior decision makers
“support & decisions”

Research community Quality departmentQuality task force
“solutions”

Workstreams to provide and
implement solutions

Storage space

Reporting process

Training programTeam 2

Team 3

Team 4

Team 5

Team 1

Quality champions
“ideas, best practices”

Quality professionals
“analyses”

Identify opportunities
Generate concepts

Analyses
Metrics
Advice, support, trainingCross-fertilization

Quality partners: IT, Biostatisticians, Patent attorneys, Communication experts,...

Fig. 5 Example of a governance model for the design phase of quality solutions in a large
organization. There is a close collaboration between the quality department and the research
community where the quality department performs analyses (such as described in Sect. 2. Looking
in the quality mirror) within the different research teams. Each research team assigns a quality
champion who works closely with the quality professionals and quality champions from other
research teams to identify opportunities for improvement, generate concepts to fill gaps, and
exchange best practices (cross-fertilization). A quality task force is formed consisting of both
quality champions, quality professionals, and representatives from other stakeholder organizations
(“quality partners”). This quality task force works on solutions for the entire research community,
such as research data storage, research data reporting processes, or a training program according to
the principles described in Sect. 3. Fixing your quality image. The quality task force provides
regular updates to senior decision-makers whose approval is required before implementation

Quality Governance in Biomedical Research 361



4 Looking Good! All Done Now? (How to Stay in the Green
Zone)

After having led your organization through the change curve, you can sit back and
enjoy the change you had envisioned. However, don’t stay in this mode for too long.
As mentioned before, quality is a journey, not a destination.

Today, it may look as if your solutions are embedded in the way people work and
have become the new norm. However, 2 years from now, your initial solutions may
no longer work for new technologies, newly recruited staff may not have gone
through the initial roll out and training, or new needs may show up for which new
solutions are required.

For a quality management system to be sustainable over time, it needs to have a
built-in continuous improvement mechanism, such as described by the PDCA (plan–
do–check–act), also known as the Deming cycle (Deming 1986) and visualized in
Fig. 6.

First, the quality solutions need to be sustainably integrated in the way of working
with clear roles and responsibilities (DO). In accordance with what has been
established in the previous section (Fixing your quality image), clear quality
expectations in the form of policies, best practices, or guidelines should be available
to the organization, and mechanism for training of new employees and for refresher
trainings of existing employees should be in place.

Ideally, all scientists advocate and apply these best practice solutions and also
communicate expectations and monitor their application in their external
collaborations.

Secondly, there needs to be amechanism tomonitor adherence to the green zone of
Fig. 1 (CHECK).When having expectations in place, it is not sufficient to just assume
that everyone will now follow them. There may be strong quantitative pressures

Continued communication on
importance of quality
Senior leaders “walking the walk and
talking the talk”
Mechanism to update
(and communicate changes to)
processes/best practices

Communication of
monitoring outcomes (from CHECK
activities)
Clarity on who will decide upon and be
responsible for any decisions/actions
related to quality monitoring findings

Mechanism to suggest changes to quality
expectations

Clear quality expectations established
Mechanism for training of new employees
and refresher training for existing
employees
Scientists advocate and apply best
practices in internal work
Scientists communicate expectations and
monitor their application in external
collaborations

Support from
the top

Quality is
sustainably
integrated in
the way we

work

Mechanism to
react/decide upon
issues or threaths

Mechanism to
monitor we stay in

the green zone

Data spot checks
Compliance to best practices
Dashboards/metrics

PLAN DO

CHECKACT

Fig. 6 Key attributes of a mature quality system represented by means of the Deming cycle
(Deming 1986)
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(time) that tend to make people act differently and may lead to quality being
compromised. If people know that there is a certain likelihood that their work will
be checked, this will provide a counterbalance for such quantitative pressures. Recent
simulations support the idea that a detailed scrutiny of a relatively small proportion of
research output could help to affordably maintain overall research quality in a
competitive research world where quantity is highly prized (Barnett et al. 2018).

Who performs these checks may depend on the type of organization. For smaller
organizations, there can be a self-assessment checklist, or a person within the lab can
be assigned to do spot checks for a percentage of their time. In larger organizations,
there can be an independent person or group of people (e.g., belonging to the quality
department) that can perform spot checks. The benefit of a person performing these
checks across different labs can be that certain practices that work well within one
lab can be identified and shared with another lab that is in need of a practical
solution. Such a person can also serve as go-to person for advice (e.g., on how to
deal with specific situation). Whoever is performing checks, it is important to build
in an element of positive reinforcement, making sure that people are recognized for
applying best practices and not feel blamed when something went wrong. Also, it is
important to make people “part of” the exercise and discuss any unclarities with
them. This will maximize the learning opportunity as it is much more powerful to say
“I am trying to reconstruct this experiment, but I am having some difficulties for
which I would like to ask for your help” than to say “I noticed you forgot to
document your 96-well plate layout.”When performed in the right way, these checks
can be a learning exercise and provide a counter-incentive for time pressure. To
clarify the latter point, in contrast to quantitative metrics (such as the number of
publications or the number of projects completed within business timelines), most
institutions are missing metrics on data quality. When checks are performed on
agreed upon quality standards (such as timely recording of data or data exclusion
criteria setting before experimental conduct), the outcomes of these checks can be
used as a metric for data quality. This way, the common quantitative metrics will no
longer be the only drivers within a research lab, and as such, quality metrics can
provide a platform to discuss route causes for poor quality data such as time pressure.

It is also worth to consider measuring the “quality culture” or “research climate”
in your institution. For this purpose, the SOuRCE (Survey of Organizational
Research Climate) (Baker 2015) may be useful. This is a validated 32-question
survey for which responses have been shown to correlate with self-reported behavior
in the conduct of research. As such, it can provide a snapshot of the research climate
in an organization through the aggregated perspectives of its members.

Other applicable indicators of quality that can be considered are, for example, the
degree to which (electronic) lab notebooks are used and reviewed within preset
timelines or the attendance of trainings.

Besides checking whether expectations are being followed, it is equally important
to make it clear to people that the quality expectations are not all carved in stone and,
for good reasons, some expectations may need to be refined, altered, deleted, or
added over time. Everyone should feel empowered and know how to suggest a
justified change to the quality expectations. Changes to quality expectation should
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not only be considered to prevent drift into the “not acceptable” zone but also to
avoid or course-correct when drifting into the “overengineering zone.” The latter is
often forgotten. Overengineering can have different causes: overinterpretation of
guidelines, mitigations staying in place while the risks have disappeared (e.g., QC
checks still occurring long after automation took place), solutions that have been put
in place being so complex that no one is following them, etc. Conversations are the
best way to detect overengineering. Such conversations can be triggered by people
voicing their frustration or coming with critical questions or suggestions on certain
expectations. Root-cause conversations can also be started when finding multiple
times the same issues during audits or a survey can be sent out from time to time to
get feedback on feasibility of quality expectations.

Third, whenever drift is seen, or when a suggestion comes up to change a certain
quality expectation, there must be a mechanism to react and make decisions (ACT).

Monitoring outcomes, be it from research data spot checks or from a cultural
survey, should be communicated and analyzed. If needed, follow-up actions should
be defined and implemented by responsible person(s).

Last but not least, the culture of quality needs to be kept alive, and expectations
need to be updated as required (PLAN). For this purpose, regular communication on
the importance of quality is crucial. This can be achieved in various ways, for
example, by putting posters next to copy or coffee machines, by highlighting best
practices during group meetings, by e-mailing relevant publications, or by inviting
external speakers. Messages coming from mentors and leaders are most impactful in
this respect as well as having people recognize that these leaders themselves are
“walking the walk and talking the talk.”

5 Conclusion

Quality governance, when installed successfully, can be a way to provide simple and
sustainable solutions that facilitate data quality and promote innovation. The basic
principles of quality governance are very similar across different disciplines; how-
ever, the practical application of quality governance is dependent on multiple
variables. Currently, existing guidance on quality governance for research is limited
and fragmented. As a result, institutions may have policies or guidelines in place, but
there is often no mechanism to monitor their application. An exception is the animal
care and use aspect of research where there is legislation as well as internal and
external oversight bodies (see chapter “Good Research Practice: Lessons from
Animal Care and Use”). Recently, the IMI project EQIPD (European Quality in
Preclinical Data, https://quality-preclinical-data.eu/) has assembled a team of both
industrial and academic researchers and quality professionals to work on practical
solutions to improve preclinical data quality. One of their deliverables is a tool to
help institutions set up a fit-for-purpose quality system including governance
aspects, aligned with the information in this chapter. Until the team has delivered
their tool, we hope the guidance provided above can be of help for institutions for
bringing their research data quality to the right level.

364 A. Gilis

https://quality-preclinical-data.eu/


References

Baker M (2015) Metrics for ethics. Nature 520:713
Barnett AG, Zardo P, Graves N (2018) Randomly auditing research labs could be an affordable way

to improve research quality: a simulation study. PLoS One 13(4):e0195613. https://doi.org/10.
1371/journal.pone.0195613

Brainard J (2018) Rethinking retractions. Science 362:390–395
Deming WE (1986) Out of the crisis. Massachusetts Institute of Technology, Center for Advanced

Engineering Study, Cambridge, p 88
Desai KG, Obayashi H, Colandene JD, Nesta DP (2018) Japan-specific key regulatory aspects for

development of new biopharmaceutical drug products. J Pharm Sci 107:1773–1786
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW

(2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43
Quinn G (2017) Patent drafting: understanding the enablement requirement. http://www.

ipwatchdog.com/2017/10/28/patentability-drafting-enablement-requirement/id¼89721/
Schofield I (2016) Phase I trials: French Body urges transparency, says don’t just follow the rules.

Scrip regulatory affairs. https://pink.pharmaintelligence.informa.com/PS118626/Phase-I-Trials-
French-Body-Urges-Transparency-Says-Dont-Just-Follow-The-Rules

Simundic A-M (2013) Bias in research. Biochem Med 23(1):12–15

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Quality Governance in Biomedical Research 365

https://doi.org/10.1371/journal.pone.0195613
https://doi.org/10.1371/journal.pone.0195613
http://www.ipwatchdog.com/2017/10/28/patentability-drafting-enablement-requirement/id=89721/
http://www.ipwatchdog.com/2017/10/28/patentability-drafting-enablement-requirement/id=89721/
http://www.ipwatchdog.com/2017/10/28/patentability-drafting-enablement-requirement/id=89721/
https://pink.pharmaintelligence.informa.com/PS118626/Phase-I-Trials-French-Body-Urges-Transparency-Says-Dont-Just-Follow-The-Rules
https://pink.pharmaintelligence.informa.com/PS118626/Phase-I-Trials-French-Body-Urges-Transparency-Says-Dont-Just-Follow-The-Rules
http://creativecommons.org/licenses/by/4.0/


Good Research Practice: Lessons
from Animal Care and Use

Javier Guillén and Thomas Steckler

Contents
1 Ethical and Legal Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

1.1 Recommendations for the Care and Use of Laboratory Animals . . . . . . . . . . . . . . . . . . . . 369
1.2 Legislation in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
1.3 Legislation in the European Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
1.4 Legislation in Other Countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

2 Implications for Preclinical Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
2.1 Oversight Bodies Impact on Preclinical Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
2.2 Animal Care and Use Programs Affect Preclinical Data Quality . . . . . . . . . . . . . . . . . . . . 372
2.3 Health Status Influencing Preclinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
2.4 The Impact of Housing and Husbandry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

3 Assessment of Animal Care and Use Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
3.1 Internal Oversight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
3.2 External Oversight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
3.3 The AAALAC International Accreditation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
3.4 Assessments by Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Abstract
Animal care and use play a pivotal role in the research process. Ethical concerns
on the use of animals in research have promoted the creation of a legal framework
in many geographical areas that researchers must comply with, and professional
organizations continuously develop recommendations on specific areas of labo-
ratory animal science. Scientific evidence demonstrates that many aspects of
animal care and use which are beyond the legal requirements have direct impact
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on research results. Therefore, the review and oversight of animal care and use
programs are essential to identify, define, control, and improve all of these aspects
to promote the reproducibility, validity, and translatability of animal-based
research outcomes. In this chapter, we summarize the ethical principles driving
legislation and recommendations on animal care and use, as well as some of these
laws and international recommendations. Examples of the impact of specific
animal care and use aspects on research, as well as systems of internal and
external oversight of animal care and use programs, are described.

Keywords
Animal care and use · Animal studies · Interplay · Preclinical data quality ·
Reliability

1 Ethical and Legal Framework

The use of animals for research purposes has been a subject of debate for a long time.
The increase of societal concerns on this matter has been and is being reflected in the
development and implementation of guidelines and strict legislation on the protec-
tion of animals used in research across the world (Guillen 2017). Although interna-
tional legislation may differ between countries in some practical aspects, they are all
based on the same ethical principles, mainly the Three Rs of Replacement, Reduc-
tion, and Refinement (Russell and Burch 1959) and, at a lesser extent, the Five
Freedoms (Brambell 1965). The Three Rs are explicitly mentioned in most impor-
tant international guidelines and regulations:

– Replacement refers to the avoidance or replacement of the use of animals in
experiments where otherwise they would have been used. However, the concept
of “relative replacement” based on strategies focused on reduction of animals and
refinement of procedures performed on animals is also valid.

– Reduction refers to minimizing the number of animals needed to obtain the
desired research objectives. Reduction strategies are normally based on
improvements of the experimental design and/or the implementation of new
techniques (e.g., imaging). An important concept is not only using less number
of animals, but the right number, as using too low numbers could invalidate the
research results.

– Refinement refers to the implementation of housing (e.g., micro- and
macroenvironment), care (e.g., husbandry practices and veterinary care), and
use (experimental techniques) procedures that minimize animal pain and distress.

The Five Freedoms (from hunger and thirst; from discomfort; from pain, injury,
or disease; from fear and distress; and from the ability to express normal behavior),
although initially proposed for the farm animal environment, are also referred to in
some legislation on research animals, especially in Asia, but also have been recently
considered for other related purposes, such as a recent proposal for the harm-benefit
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analysis to be performed as part of the ethical evaluation of research projects
(Brønstad et al. 2016; Laber et al. 2016).

1.1 Recommendations for the Care and Use of Laboratory
Animals

The common aspects of the ethical framework described above help with the
harmonization of animal care and use in science, and of science itself through the
implementation of international guidelines and recommendations, as well as com-
patible pieces of legislation (Guillen and Vergara 2017). Based on the current ethical
concepts, the International Council for Laboratory Animal Science (ICLAS)
collaborated with the Council for International Organizations for Medical Sciences
(CIOMS) to update the International Guiding Principles for Biomedical Research
Involving Animals, with the intention to guide emerging countries in developing a
framework of responsibility and oversight on the use of animals in research and to
serve as an international benchmark also in countries with well-developed animal-
based research programs (Council for International Organizations for Medical
Sciences and International Council for Laboratory Animal Science 2012). The
Three Rs represent a significant aspect of this document. Also, the World Organiza-
tion for Animal Health (OIE), with 180 member countries, recognizes the Five
Freedoms as valuable guidance in animal welfare and more specifically describes
the Three Rs and highlights their key role in the use of animals in science in Chap.
7.8 of the Terrestrial Animal Health Code (World Organization for Animal Health
2012).

One of the most widely followed sets of recommendations on animal care and use
can be found in the Guide for the Care and Use of Laboratory Animals (Guide;
National Research Council of the National Academy of Sciences 2011). The Guide,
issued in the USA by the Institute for Laboratory Animal Research (ILAR) of the
National Research Council (NRC), is the main nonregulatory reference in the USA,
also serves as the basis for regulations and recommendations in other areas of the
world (Guillen 2017), and is one of the primary standards for the accreditation of
animal care and use programs across the world performed by the nonprofit organi-
zation AAALAC International (see below). The Guide refers to the Three Rs and to
the US Government Principles for the Utilization and Care of Vertebrate Animals
Used in Testing, Research, and Training (United States Government 1985), which
already incorporate these same basic ethical principles. It offers recommendations on
all areas of an animal care and use program, such as the institutional responsibilities
(including the oversight process, the training of personnel, and the occupational
health and safety program); the animal environment, housing, and management; the
veterinary care; and the physical plant. The Guide states that it “is created by
scientists and veterinarians for scientists and veterinarians to uphold the scientific
rigor and integrity of biomedical research with laboratory animals as expected by
their colleagues and society at large” and “establishes the minimum ethical, practice,
and care standards for researchers and their institutions.”
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Many professional organizations publish more specific recommendations on
particular areas of an animal care and use program, such as ethical review, health
monitoring, or education and training. Especially noteworthy are the Federation of
European Laboratory Animal Science Associations (FELASA; www.felasa.eu), the
American Association for Laboratory Animal Science (AALAS; www.aalas.org),
and the Canadian Council on Animal Care (CCAC; www.ccac.ca). Other
organizations focus exclusively on the development and dissemination of Three
Rs initiatives, like the NC3Rs in the UK (www.nc3rs.org.uk), the North American
3Rs Collaborative in the USA (http://www.na3rsc.org/home.html), or Norecopa in
Norway (https://norecopa.no/).

1.2 Legislation in the USA

In the USA, legislation on the care and use of animals comes from the US Depart-
ment of Agriculture (USDA) and the Public Health Service (Bradfield et al. 2017).
The Guide details the requirements of the Public Health Service Policy (PHS Policy)
on Humane Care and Use of Laboratory Animals (Public Health Service 2002) and
is used by institutions to comply with the PHS Policy. Therefore, although the Guide
is not a piece of legislation, its standards are considered as minimum requirements by
the PHS. On the USDA side, the Animal Welfare Act and related Animal Welfare
Regulations represent the only federal law in the USA that regulates the treatment of
animals in research, with the particularity that rats, mice, and birds are not consid-
ered regulated species (United States Government 1966). However, the Guide
standards are applied to all vertebrate species. The US system gives a lot of
autonomy to the institutions and is based on the Institutional Animal Care and Use
Committees (IACUCs), where participation of researchers is mandatory. The
IACUC is the body responsible for the evaluation and authorization of the research
protocols, and the oversight of the entire institutional animal care and use program,
including the appropriate training of personnel to perform the assigned tasks.

1.3 Legislation in the European Union

Legislation in the European Union is based on Directive 2010/63/EU (European
Parliament and the Council of the European Union 2010), which has been transposed
into the legislation of all European member states (Guillen et al. 2017). The
Directive addresses explicitly the Three Rs and distributes the main responsibilities
between the public competent authorities and the users. Authorized establishments
must have an Animal Welfare Body (AWB) with an advisory function on ethical
matters, while the (ethical) project evaluation is assigned to the public competent
authorities. However, the Directive allows member states to designate other bodies
than public competent authorities for the implementation of certain tasks, and at
present the project evaluation is performed in a variety of manners across the
European Union, either by institutional ethics committees, external bodies, public
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competent authorities at regional or national level, or a combination of them (Guillen
et al. 2015). Annex III of the Directive dictates the requirements for care and
accommodation of animals, based on the minimum cage sizes of the Appendix A
of the European Convention ETS 123, which, although not a piece of legislation,
was the first pan-European document addressing in detail the protection of animals
in science and was signed and ratified by a majority of the members of the Council of
Europe (Council of Europe 1986, 2006). These minimum cage sizes are generally
bigger than the ones recommended in theGuide and represent one of the most visible
differences between the US and European research programs. In terms of training of
personnel, the Directive requires that staff shall be adequately educated and trained
before they perform certain functions including carrying out procedures on animals
and designing procedures and projects and that competence is demonstrated. How-
ever, it is a competence of the member states to establish the minimum training
requirements.

The European Commission has published a number of consensus documents
on the implementation of the Directive, which can be found at: http://ec.europa.eu/
environment/chemicals/lab_animals/interpretation_en.htm. Similar legal
requirements are enforced in other European countries outside of the European
Union, e.g., in Switzerland and Norway (Guillen et al. 2017; NORECOPA 2016).

1.4 Legislation in Other Countries

Other areas of the world have also developed legislation which have been exten-
sively described elsewhere (Guillen 2017). In addition to countries such as Canada,
Australia, New Zealand, or Israel having similar frameworks to those developed in
the US or the European Union, many Asian countries have developed specific
legislation, as well as several countries in Latin America (i.e., Brazil, Mexico, and
Uruguay). Africa is the region where there is less legislation, although there are
already professional associations or scientific events in some countries.

The most important aspect of the legislative initiatives is that all of them are based
on the same ethical principles and try to achieve the same objectives (Guillen and
Vergara 2017): Improving animal welfare standards in science is an objective per se,
but this objective brings along another very important one which is the improvement
of scientific quality.

Legislation that reflects international, common ethical questions is a key element
in achieving these objectives. Also, legal documents normally address the same main
topics: a process for the ethical evaluation (and authorization) of research protocols
or projects; the need for appropriate training and competence of all personnel
involved in the care and use of animals (caretakers, researchers, veterinarians,
etc.); the animal environment and management (housing conditions, daily care,
etc.); the need of effective veterinary care; and general requirements for facilities.
Even in countries lacking specific legislation, researchers, veterinarians, and
research institutions and associations work to follow these general instructions and
the establishment of oversight systems, and the existence of active IACUCs or
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institutional ethics committees to review and improve the research protocols
involving the use of animals is common also in these areas.

2 Implications for Preclinical Data Quality

2.1 Oversight Bodies Impact on Preclinical Data Quality

Thus, there is an extensive legal framework in many countries that regulates animal
care and use, but how does animal care and use affect the quality of the preclinical
data generated in animal experiments? First, the legal framework and its interpreta-
tion by oversight bodies (i.e., IACUCs/AWBs/ethics committees) can have a signif-
icant impact on data quality, both positive and negative.

As mentioned above, a reduction in the number of animals used according to the
Three Rs is an important concept for the ethical evaluation of an animal study. But
overemphasizing the need to minimize the number of animals in an experiment,
without consideration of the appropriate number of animals needed to reliably
answer the research question, can lead to underpowered studies with spurious
results. Likewise, an uncritical refusal of study replications as unnecessary duplica-
tion of previous experiments by oversight bodies would violate the principles of
good scientific methods required to gain confidence in an experimental finding (Pritt
and Hammer 2017). A more balanced view by oversight bodies, on the other hand,
helping with experimental design and statistical input to, e.g., determine the required
sample size for the proposed studies at time of project application, can be an
important step to ensure the appropriate number of animals is used and to facilitate
the generation of reliable data. Clearly, this is what IACUCs/AWBs/ethical
committees should strive for.

2.2 Animal Care and Use Programs Affect Preclinical Data Quality

Second, it is important to recognize that, despite the legal framework, animal
facilities and their institutional animal care and use programs can differ in many
aspects, even within the same country or the same organization (e.g., university). For
example, there could be different barrier, hygiene, and sanitation levels to protect the
health and well-being of the animals and the people working in the facility; animals
could differ in microbiological status and receive different levels of veterinary care;
there could be differences in the macroenvironmental (temperature, relative humid-
ity, light intensity and duration, noise level, air circulation) and/or in the microenvi-
ronmental conditions (e.g., caging system, bedding, physical or social enrichment);
there could be variations in food supplied and in water quality and also in a number
of procedures, e.g., in animal acclimation, handling, transport, or surgery, to name a
few, all of which could affect experimental outcome (Table 1).

372 J. Guillén and T. Steckler



2.3 Health Status Influencing Preclinical Data

Fox and colleagues, for example, reported on a study designed to determine whether
long-term oral supplementation with creatine, used by athletes in training, would
cause histologic organ lesions in mice. Animals treated with creatine developed
hepatitis but so did the control mice. Notably, Helicobacter bilis (H. bilis) was
isolated from these mice and associated with hepatotoxicity seen in that study, thus
confounding the experiment (Fox et al. 2004). A related Helicobacter species,
H. hepaticus, has also been associated with hepatitis, inflammatory bowel disease,
and cancer (Zenner 1999) and can promote drug-induced tumorigenesis in mice
(Diwan et al. 1997; Nagamine et al. 2008; Stout et al. 2008). Of note, mouse
Helicobacter infections often remain subclinical, and the animals appear healthy
but can become symptomatic. The occurrence of clinical signs depends on various
factors, such as strain, immunocompetency, and the gastrointestinal microbiome
(Ihrig et al. 1999; Staley et al. 2009; Yang et al. 2013) and hence can lead to
unexpected confounds of animal studies.

There are several other opportunistic and obligatory pathological microorganisms
that can interfere with experimental outcome. It is therefore important that animals
are regularly screened for the presence of these microorganisms (cf. FELASA
recommendations for health monitoring in rodents, last revision: Mähler et al.
2014), either to exclude infected animals from the experiment, to initiate treatment
if required (and possible), or at least to have clarity about the presence or absence of
microorganisms.

However, the importance of microorganisms goes beyond agents causing clinical
or subclinical disease. The gut microbiota also plays a critical role in animal and
human health and disease, and its impact on animal physiology and, therefore, on
how animals react in certain studies has been extensively studied in recent years

Table 1 Aspects of an animal care and use program that can affect the quality of preclinical data
from animal studies

• Physical plant and environmental conditions (e.g., building material, control of environmental
factors, such as temperature, relative humidity, air quality)

• Training (e.g., qualifications, experience, and competence of animal technicians, researchers,
veterinarians)

• Oversight (internal, by IACUC/AWB/ethics committee; external, by competent authority; or
third-party accreditation, AAALAC International, CCAC)

• Housing (e.g., caging system, space, enrichment, holding room)

• Husbandry (e.g., cleaning and sanitation, food, water, bedding)

• Animal procurement (e.g., source, transport)

• Quarantine and biosecurity practices

• Health monitoring program

• Veterinary interventions

• Surgical program (techniques, asepsis, anesthetic regimens, postsurgical care)

• Pain and distress (e.g., medication, recovery)

• Euthanasia method
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(Franklin and Ericsson 2017; Hansen et al. 2015). Both the potential impact of
infectious agents and natural microbiota can be modified by routine housing and
husbandry conditions.

2.4 The Impact of Housing and Husbandry

Housing conditions and husbandry can also have substantial effects on experimental
rodent data, yet often researchers are not fully aware of all the environmental factors
in an animal facility that can influence data quality in their experiments (Jain and
Baldwin 2003; Toth 2015). These factors include cage size, positioning of the
holding cage in the rack, cage material, type of bedding, ambient cage temperature,
humidity, noise levels, light intensity, duration of the light/dark cycle, number of
animals per cage (individual vs. social housing), food access (continuous or
restricted), type of food, physical enrichment provided, cage changing practices,
transporting cages with animals within a room or between rooms, and sanitation
cycle of the holding room (reviewed in Castelhano-Carlos and Baumans 2009;
Everitt and Foster 2004; Nevalainen 2014; Toth 2015), and this list is far from
complete.

Social housing, for example, increased dopamine D2 receptor expression in
dominant monkeys, but not in subordinate monkeys, when compared to individual
housing, and also affected the reinforcing properties of cocaine (Morgan et al. 2002).
The stability of baseline cardiovascular parameters was affected by the arrangements
of pens and the social setting in dogs implanted with telemetry devices (Klumpp
et al. 2006). Similarly, social enrichment has been reported to affect cardiovascular
function at resting state in monkeys (Xing et al. 2015). Housing temperature affects
the growth rate of tumors in mice (Hylander and Repasky 2016; Kokolus et al.
2013). These examples highlight the importance of housing conditions on preclinical
data across a variety of species.

Thus, the health status of the animal, environment factors in the animal facility,
daily animal care routines and experimental manipulations (e.g., recovery surgery),
as well as the experience, skills, and qualifications of the people performing these
activities in the animal facility (animal care staff, veterinarians, researchers) contrib-
ute to the variability of preclinical data generated in animals (Howard 2002).
A reduction in the variability of experimental data generated in laboratory animals
has been coupled to refinements in microbial quality monitoring and husbandry, as
well as higher professional expertise (Quimby 1993), and there is additional evi-
dence suggesting that this trend continues with additional refinements, e.g., the
introduction of environmental enrichment, even though this was initially much
debated (Bayne and Würbel 2014). This is important, not only for the quality of
the preclinical data generated but also from an ethical perspective as high data
variability requires a higher number of test animals for a study to be conclusive.
Also, the scientific utility of a highly variable and non-reproducible study can be
questioned, with the associated risk that animals are wasted. As has been pointed out,
“laboratory animal husbandry issues are an integral but [unfortunately still]
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underappreciated part of investigator’s experimental design” (Nevalainen 2014,
p. 392). Thus, there is a plea for even more reduction of variability in further refined
animal care and use programs and for more detailed reporting of animal holding
conditions in publications in order to enhance transparency and consequently repro-
ducibility of preclinical data.

With this aim in mind, guidelines have been proposed for the items to be
considered when planning and reporting animal experiments (see also chapter
“Minimum Information in In Vivo Research”). The PREPARE Guidelines aim to
help researchers to consider all relevant items when planning animal experiments “to
reduce the risk of problems, artefacts or misunderstandings arising once studies have
begun” (Smith et al. 2018). The ARRIVE Guidelines were developed “to maximize
the output from research using animals by optimizing the information that is
provided in publications on the design, conduct, and analysis of the experiments”
(Kilkenny et al. 2010). Many scientific journals have already adhered to the
ARRIVE Guidelines (although their impact is debatable, cf. Hair et al. 2019) and
more recently an update of the guidelines has been published (Percie du Sert et al.
2019a, b), while the impact of the PREPARE Guidelines is still to be evaluated.

3 Assessment of Animal Care and Use Programs

3.1 Internal Oversight

Internal oversight bodies, i.e., IACUCs/AWBs/ethics committees, can have a signif-
icant impact on data quality. First, they are tasked with the review of the ethical
protocols, in accordance with national and international legislation and institutional
policies. As part of this review process, the internal oversight body also plays an
important role in advising on the experimental design of the proposed studies,
including statistical considerations, and assures pain, discomfort, and distress are
reduced to a minimum (Everitt and Berridge 2017; Silverman et al. 2017). As
mentioned above, those factors can significantly impact on preclinical data quality.
Second, the internal oversight body should conduct inspections of its own animal
program and facility, at least annually or preferentially more often, also depending
on legislation and policies. Besides assurance of the ethical and humane use of
animals in research, this will also ensure that all aspects of an animal care and use
program that can affect the quality of preclinical data from animal studies are well
controlled, and it will create opportunities for further improvements of the quality of
research, e.g., by assuring that surgical facilities are state of the art and that
investigators conducting surgical procedures are properly trained. Third, post-
approval monitoring conducted by the oversight body, primarily serving to ensure
that animal use is occurring as described in the approved protocol, may also
contribute to data quality. There are interdependencies between compliance, consis-
tency, and reproducibility, and failure to reproduce an experiment has been consid-
ered as an unintended consequence of noncompliance with approved procedures
(Silverman et al. 2017). Thus, the internal oversight body plays a pivotal role in the
assurance of data quality in animal studies.
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3.2 External Oversight

Depending on national legislation, ethical evaluation and/or authorization for animal
studies may also be provided by external ethics committees, e.g. by bodies at the
regional or national competent authority level, or other bodies authorized by the
competent authorities to perform the ethical evaluation on their behalf. Their role in
the assurance of data quality during project review is comparable to the role of an
internal oversight body. In addition, many countries have a mandatory requirement
for regular, announced or unannounced, inspections of animal facilities by a compe-
tent authority to monitor compliance with legal obligations. Naturally, experienced
inspectors will also have an impact on preclinical data quality through assurance of a
compliant animal care and use program. However, often these inspections are risk-
based and may not cover all aspects of an animal care and use program that could
affect preclinical data quality, and whether advice relevant to data quality is given
may also depend on the profile, skills, and experience of the individual inspector.
The internal oversight body is much better positioned to ensure full coverage of the
aspects relevant to the quality of data from studies involving animals, to promote
consistency and timely action, if required, and should take primary responsibility.

3.3 The AAALAC International Accreditation Process

AAALAC International (AAALAC) (www.aaalac.org) is a voluntary accrediting
organization that enhances the quality of research, testing, and education by promot-
ing humane and responsible research animal care and use through provision of
advice and independent assessments to participating institutions and accreditation
of those that meet or exceed applicable standards. More than 1,000 institutions
including companies, universities, hospitals, government agencies, and other
research institutions in 47 countries have earned AAALAC accreditation,
demonstrating their commitment to responsible animal care and use. These
institutions volunteer to participate in AAALAC’s program, in addition to comply-
ing with the implementing laws that regulate animal research.

AAALAC was established in 1965 in the USA and is governed by approximately
70 scientific organizations from all around the world. The assessment and accredita-
tion activities are performed by independent professionals with expertise in the field,
who form the Council on Accreditation. The Council has three North American
sections, two in the Pacific Rim, and one in Europe, each taking care of the activities
in their respective geographical areas. The primary standards used by the Council are
the Guide, the ETS 123, and the Guide for the Care and Use of Agricultural Animals
in Research and Teaching (Federation of Animal Science Societies 2010). The
Council may also use other scientific publications on different topics called Refer-
ence Resources (https://www.aaalac.org/accreditation/resources.cfm) and has to
ensure that accredited programs comply with the implementing legislation in the
specific location of the evaluated program. Council members are helped by ad hoc
consultants/specialists, who are the same type of professionals, normally selected
based on the particular expertise needed for each evaluation process.
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When one institution voluntarily applies for the accreditation, it has to complete
and submit the Program Description (https://www.aaalac.org/accreditation/apply.
cfm), a document where all areas of the animal care and use program have to be
thoroughly described. This includes the institutional responsibilities (key responsi-
ble personnel, oversight and ethical review process, competence of personnel,
and occupational health and safety program), the animal environment, housing
and management, the veterinary care program, and the physical plant. The
Program Description is then reviewed by a Council member and the collaborating
ad hoc(s), and a site visit to the institution is scheduled to evaluate the quality of the
program on site. The report coming from this site visit is reviewed by and discussed
with the other Council members of the same section and a decision on the accredita-
tion status taken. Depending on the severity of the issues (if any) identified during
the process, there may be mandatory issues that the institution must correct before
obtaining full accreditation, and/or suggestions for improvement, which are strong
recommendations for the improvement of the program that the institution can
voluntarily address.

The evaluation process is based on performance standards rather than on engi-
neering standards, which is particularly important when considering the global scope
of AAALAC (Guillen 2012). While engineering standards are rigidly defined, easily
measurable (e.g., minimum cage sizes), performance standards are outcome ori-
ented, focused on goals or expected results rather than the process used to achieve
the results, and have the flexibility needed in the diverse research environment.
AAALAC has to make sure that institutions comply with the engineering standards
which are normally part of legislation, but on top of that also apply the performance
standards as described in the AAALAC Primary Standards. For example, AAALAC
may accept different ethical review processes if they, in addition to be legally
compliant, are effective and there is evidence of a good outcome.

The AAALAC accreditation process is compatible with quality systems like GLP
or ISO. In fact, many institutions who implement GLP or ISO because they perform
regulated research or have general quality systems in place (e.g., contract research
organizations, pharmaceutical companies) also implement the AAALAC accredita-
tion as this is the only global system specifically focused on animal care and use
programs and carried out by independent professionals in the field. This peer-review
process has been extremely successful and continues to expand in institutions around
the world.

3.4 Assessments by Industry

Animal studies form an integral part of the drug development process. Those studies
are either conducted within the research facilities of a company or are outsourced
and performed by external service providers. To ensure external partners comply
with technical requirements and ethical standards, more and more pharmaceutical
companies started to formally assess the animal care and use programs of their
collaborators on a regular basis, including contract research organizations (CROs),
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academic groups, and breeders (Mikkelsen et al. 2007; Underwood 2007). A more
recent development is the joint assessment of breeders and CROs by consortia of
pharmaceutical companies, which facilitates harmonization of processes across
companies and enhances capacity and expertise (Interpharma 2018). In general,
these animal care and use program assessments cover the aspects highlighted in
Table 1, plus additional topics, such as documentation, occupational health, and
safety, and often are closely oriented on the AAALAC process.

4 Conclusion

There are multiple evidences of the influence of animal care and use conditions and
practices on animal-based research outcomes. The existing legislation on the use of
animals in research, established upon internationally accepted ethical principles,
helps creating a more common research environment that facilitates extrapolation
of research results obtained in particular institutions. However, animal care and use
practices may differ significantly across institutions, with potentially significant
and often unknown effects on research results. Professional science-based
recommendations try to complement legislation by creating standards on a number
of areas, including ethical review, health monitoring, animal environment, hus-
bandry practices, training of personnel, and others. But the implementation of the
standards by research institutions still varies significantly and is very often
depending on institutional or even individual commitment.

What can we learn for Good Research Practice? First and foremost, it should be
clear now that the quality of animal care and use directly impacts on the quality of
preclinical data. In addition, the field of animal care and use has established a
framework that could be seen as a role model for Good Research Practice: Minimum
requirements as defined by guidelines and legislation such as the Guide or the
Directive 2010/63/EU set the standards for animal care and use programs in the
USA and in EU member states, and both internal and external oversight bodies have
been created to ensure proper implementation and adherence to these standards. The
review and oversight of animal care and use programs is a key tool to not only ensure
compliance with legal requirements but also to establish a well-defined research
environment that considers all aspects of animal care and use that can impact
research outcomes. This oversight may be internal, already mandated by legislation
in many countries, and external by peers. A combination of the day-to-day internal
oversight with a periodic independent external review seems to be the most efficient
way to ensure the implementation of a high-quality animal care and use program
where, in addition to addressing animal ethical and welfare issues, researchers can
produce better quality science.
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Neither theGuide nor the Directive 2010/63/EU is overtly prescriptive (except for
a few clearly defined and nonnegotiable engineering standards), and also accrediting
organizations such as AAALAC International strongly adhere to the principle of
performance standards, which allows flexibility in the implementation of these
standards.

These principles of minimum requirements, performance standards, and internal
and external oversight could be implemented in other areas of research in a manner
that is fit for the intended purpose. One may envision Good Research Practice that is
guided by lean, easy to use minimal requirements defined by a quality system, based
on the specific needs of the research group and working on performance standards,
with day-to-day internal oversight and periodic external assessments, not to police
but to improve daily research practice, possibly in combination with an accreditation
process. The European Quality in Preclinical Data (EQIPD) IMI consortium (https://
quality-preclinical-data.eu/) is in fact following these same principles, with the
added advantage to look at animal care and use and Good Research Practice
holistically, as not only does animal care and use affect the quality of preclinical
data, but the need for preclinical data quality will impact on animal care and use.
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Abstract
Collaboration is the cornerstone of nowadays research. Successful collaborative
research and high research quality go hand in hand. Collaborative research needs
to build on common and upfront expectations for the quality of its outputs. This is
necessary to enable a trustful research environment where all are committed to
contribute and can share the rewards. A governance and leadership are critical for
this to happen as well as a policy for openness and for effective data sharing.
Collaborative research is often large-scale research: to be successful it needs good
research practice as an enabler. Collaborative projects are ideal vehicles to
promote high research quality, among other by enabling the delivery of results
of high external validity and the development and implementation of standards.
Robustness of results increases when confirmed by combining different methods
and tools and even more when results are obtained while sharing and learning
different approaches and languages of science. When doing collaborative
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research, there is the best opportunity to combine the different experience and
expertise of all partners by design to create a more efficient and effective
environment conductive for high-quality research. Using as example the public-
private partnership type of projects created by the Innovative Medicines Initia-
tive, the chapter covers the key aspects of the complex relationship between
collaborative research and quality of research providing insights on the critical
factors for delivering both a successful collaboration in research and robust high-
quality research outputs.

Keywords
Data quality · Governance · Industry · Knowledge · Research output ·
Stakeholders · Trust

1 Introduction

Most modern biomedical research depends on collaboration. While research collab-
oration is usually thought to mean an equal partnership between two or more
members who are pursuing mutually interesting and beneficial research, research
collaborations come in many types and species where the relationship between the
collaborators varies both in its depth and in the balance of the relationship.

At the “light” end, research collaboration might simply imply getting access to
assets such as reagents, instruments, assays and data, owned by one researcher or by
another researcher for its own research interests. A rather different type of collabo-
ration is contract work where one, often private, entity enters into contractual
relationships with another, often academic, institution to get a certain type of
research work done. On the “heavy” end, we then have fully collaborative research
where research is carried out jointly from idea generation to its implementation.

Most collaborative biomedical research occurs between two or more academic
institutions. When the focus of research moves from basic to more applied research,
its scope requires often involving actors beyond academia. A special type of
collaboration is that between public and private institutions in public-private
partnerships, such those created by the Europeans, the Innovative Medicines Initia-
tive (IMI) (The Innovative Medicines Initiative 2009). The IMI is a joint initiative
(public-private partnership) of the European Commission (EC) and the European
Federation of Pharmaceutical Industries and Associations (EFPIA). The current
programme, IMI2 Joint Undertaking (IMI2 JU), is part of the Horizon 2020 Frame-
work programme. IMI fosters collaborative research among many different
stakeholders, from large industries (mainly biopharmaceutical but most recently
also from diagnostics, information technology and imaging industries) to small
medium-sized enterprises, academia, hospitals, regulators, patient organisations,
etc. These partnerships (consortia) implement a research work plan where all
members work jointly towards agreed and fixed objectives and deliverables. The
resources (often very significant) are provided, on one side, by funding from the EC
to all eligible entities and, on the other side, through in-kind contributions from the
industry members of the EFPIA and in some projects by Associated Partners to the
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IMI2 JU. Importantly, neither the EFPIA members nor the IMI2 JU Associated
Partners are eligible for funding. Thus, they participate at own cost and provide
resources (experts’ time, setting and running of assays and models, clinical studies,
etc.) for the implementation of the research. The IMI has proven to be a very
successful collaboration model with significant output already delivered (Faure
et al. 2018). The terms of the collaboration in the IMI consortia are established by
the grant agreement that all partners have to sign with the IMI and, most importantly,
by the consortium agreement that all members of the consortium have to sign among
themselves.

A lot has been written regarding the pros and cons of research collaboration and
on the “added value” of research collaboration. Here, I would like to focus on the
complex and important relation between research done collaboratively and quality of
its (research) output. The aim is not to demonstrate any potential or even causal
relationship but to bring to the attention of the reader the important interdependences
among collaborative research and research quality, highlighting benefits and
challenges.

To provide some “real-life” evidence, I will use as examples cases of collabora-
tive research in public-private partnerships of the type created by IMI. The IMI
research collaborations are highly complex, in terms of both content and
stakeholders involved, and the robustness of the research outputs is affected by all
factors that in isolation may be relevant for “simpler” research collaborations. At a
recent event for the 10th year anniversary of the IMI, the Commissioner Moedas
defined the research collaboration fostered by IMI as “radical collaboration” (The
Innovative Medicines Initiative Radical Collaborations 2018).

2 Successful Collaborative Research and High Research
Quality Are Interdependent

High-quality research produces results that can be confidently used as the basis for
generating new knowledge or for application purposes (e.g. the development of a
new drug). When choosing collaborators the trust in the quality of their research
outputs is a key factor. Thus high-quality research and successful collaborative
research go hand in hand. Robustness of results is increased when it can be
confirmed by combining different methods and tools and even more when results
are obtained while sharing and learning different approaches and languages of
science. When doing collaborative research, there is the best opportunity to combine
the different experiences and expertise of all partners by design to create a more
efficient and effective environment conductive for high-quality research.

Most IMI consortia perform collaborative research that is highly multidisciplin-
ary and where research teams work jointly across the public and private sector. For
example, the IMI “Methods for systematic next generation oncology biomarker
development”, ONCOTRACK project (Methods for Systematic Next Generation
Oncology Biomarker Development ONcoTRACK Project 2016), is a
precompetitive research project that was created to tackle the general problem of
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identification and validation of clinically robust biomarkers in oncology (Schütte
et al. 2017). The project team included eight EFPIA industry teams, nine
universities/research institutions and four SMEs. Among the outputs of this consor-
tium is a high-throughput screening platform for three-dimensional patient-derived
colon cancer organoid cultures. The platform has been fully validated for assay
robustness and reproducibility, an achievement only possible via the collaborative
efforts of the multidisciplinary industry-academia team, built on a foundation of trust
in the quality of the work of each partner with criteria agreed and applied from the
very beginning of the partnership (Boehnke et al. 2016).

However, such complex cross-fertilisation comes with some caveats. It must not
be underestimated that, for such collaborative efforts to succeed, all partners need
time and good will to adjust to each other’s way of working and thinking. Technical
jargon can be very different; the same acronym may have very different meanings
(e.g. API: “Active pharmaceutical ingredient” or “application programming inter-
face”). The time and resources necessary for this preparatory work should be
considered carefully with attention to aspects such as a good communication plat-
form and legal support. It can be a lengthy and challenging process: timelines should
be adjusted accordingly, and expectations!

Trust is the uppermost key factor of success for a research collaboration. In a
collaboration, researchers depend for success on both their own results and those of
their partners. Since it might be challenging and impracticable to share fully details
of work going on in different laboratories, the application of high-quality standards,
understood and agreed by all partners from the very start of the collaborative work, is
an important enabler for a successful partnership. Once such standards are in place,
there is higher motivation and opportunity for the achievement of robust high-quality
results and conclusions.

Collaborative research has enabled research programmes at an unprecedented
scale. Typical examples are those from genetic research. Here, large-scale collabo-
rative genome studies have delivered huge amount of data opening new avenues for
the understanding of disease biology via the use and reuse of these data by many
scientists. A stringent adherence to good research practice and quality control is
necessary when working at such scale. Among the many programmes is worth
mentioning the “Encyclopedia of DNA Elements, ENCODE initiative funded by
the National Human Genome Research Institute” (Encyclopedia of DNA Elements
(ENCODE) 2019). ENCODE aims to identify all functional elements in the human
and mouse genomes and make them available through the project’s freely accessible
database. The ENCODE project has developed standards for each experiment type to
ensure high-quality, reproducible data and novel algorithms to facilitate analysis
(ENCODE Consortium 2017). As a result of outreach and collaboration, enabled by
such quality-driven approach, ENCODE has been highly successful, and its data are
widely used to deliver high-quality publications.

While standards are needed to deliver a successful collaboration, conversely
collaborative research can be a powerful tool to boost the development and imple-
mentation of standards and interoperability of results, which again significantly
enhances research quality as shown by two further examples below.
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Modelling and simulation (M&S), a technology providing the basis for informed,
quantitative decision-making, is of high importance in modern drug development.
A lack of common tools, languages and ontologies for M&S often leads to inefficient
reuse of data and duplication of effort by academic, industrial and regulatory
stakeholders, as well as hindering research quality. The IMI “Drug Disease Model
Resources”, DDMoRe (Drug Disease Model Resources DDMoRe Project 2012),
consortium delivered a set of integrated tools, exchange standards and training to
improve the quality and cost-effectiveness of model-informed decision-making for
pharmaceutical research and development. The set of standards has been designed
both for model and workflow encoding and for storage and transfer of models and
associated metadata. One of the key products the project developed based on these
standards is the publicly available DDMoRe model repository (DDMoRe Model
Repository 2017). It provides access to more than 100 annotated and “ready to use”
pharmacokinetic (PK), pharmacodynamic (PD), PK/PD, physiologically based PK
(PBPK), statistical and systems biology models applied in different therapeutic areas
like oncology, diabetes and neuroscience. The model repository content is quality
assured by experts from the DDMoRe model review group, who provides
on-demand impartial review and assesses the model’s technical validity and repro-
ducibility. The models that pass the review are certified and can be confidently
reused by anyone either commercially or for research purposes.

Rheumatoid arthritis (RA) is a very common and debilitating condition due to
many underlying disease mechanisms, thus the plethora of animal models of which
the translatability and reproducibility is not well established. The IMI “Be The Cure”
BTCure (“Be The Cure” BTCure Project 2012) consortium developed an infrastruc-
ture to standardise procedures to generate and interpret commonly used RA animal
models, as well as to generate new types of RA animal models. Their work has
shown how data obtained from these models might lack quality and reproducibility,
due to insufficient documentation and nomenclature, wrong presentation of results
and data, as well as the selection of inappropriate models and strains. Most impor-
tantly, the BTCure team proposed relevant solutions and developed training material
to improve the quality of RA models (Holmdahl 2015). The achievement has been
possible only by the joint collaborative work of key opinion leaders in the field of
RA to build a critical mass of experts and achieve consensus via a series of dedicated
workshops (e.g. BTCure Consortium 2012).

High-quality research has external validity. This does not mean its results are
fully reproducible in an identical manner anywhere and anytime but that each result
comes together with the awareness and understanding on the potential contextual
factors that determine the variation over space or time. Collaborative research
enables several partners in a consortium to replicate each other results and then
share the obtained knowledge. This dramatically increases the robustness of the
research outputs allowing to understand factors impinging on reproducibility of
results.

For example, drug-induced liver injury (DILI) is a serious issue not only for
patients and health-care professionals but also for the pharmaceutical industry and
regulatory authorities. Human-specific and idiosyncratic adverse reactions are often
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detected only at the clinical and post-marketing stages leading to costly termination
of drug development and risk for the patients with black box warnings or even
withdrawal of drugs from the market. DILI remains a significant problem in drug
development, suggesting that currently used in vitro models are not appropriate for
effective screening. The IMI “Mechanism-Based Integrated Systems for the Predic-
tion of Drug-Induced Liver Injury” MIP-DILI (Mechanism-Based Integrated
Systems for the Prediction of Drug-Induced Liver Injury MIP-DILI Project 2012)
consortium has run a comprehensive, multicentre, unbiased assessment to test this
unequivocally. The consortium used a panel of compounds implicated in DILI in
man, in order to determine whether any of these simple cell models per se are
actually predictive of human DILI. Furthermore, by using a small panel of DILI-
and non-DILI-implicated compounds and basic measures of cell health, it monitored
reproducibility across different sites, thereby ensuring that data should be more
definitive than any currently available (Sison-Young et al. 2017).

Multicentre collaborations can expose systematic biases and identify critical
factors to be standardised. Human-induced pluripotent stem cells (iPSCs) are pow-
erful tools for novel in vitro models in basic science and drug discovery. iPSCs need
to be differentiated using lengthy complex procedures with increased possibility for
variability and noise in the results. The IMI “Stem cells for biological assays of novel
drugs and predictive toxicology” (STEMBANCC) project (Stem Cells for Biological
Assays of Novel Drugs and Predictive Toxicology Project 2014) runs a unique
assessment of the inter- and intra-laboratory reproducibility of transcriptomic and
proteomic read-outs using two iPSC lines at five independent laboratories in parallel.
By achieving larger sample numbers in a collaborative approach with cross-
laboratory studies, the team could detect identifiable sources of variation that
investigators can control. This study also strongly advocates for transparency via
disclosure of identified variation-inflating confounders in published iPSC differenti-
ation protocols (Volpato et al. 2018).

3 Quality of Research and Sustainability

Collaborative research connects researchers and institutions. The created networks
are key assets that go beyond the lifetime of an individual project and can play an
important function as ambassadors of the culture of quality in research. The
networks can lead by example but can only be successful in time by being open to
new members and by including elements of education, training and dissemination of
good practice and processes.

The IMI “Combatting Bacterial Resistance in Europe” (COMBACTE) consor-
tium (“Combatting Bacterial Resistance in Europe” COMBACTE Project 2015) has
delivered a high-quality European clinical trial and laboratory network in which new
antibacterial drugs can be evaluated for the treatment and prevention of infections
caused by multiresistant bacteria. Over 650 laboratories and over 850 clinical trial
sites all over Europe are already interconnected. Development of new antibiotics is
hampered by limited market incentives but also significantly limited by suboptimal
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quality of trial results and lack of innovative methods robust enough to be accepted
by the regulators. The COMBACTE network of statistical experts “STAT-Net” has
reviewed and tested several innovative trial designs and analytical methods for
randomised clinical trials, which has resulted in eight recommendations made
available to the community in a white paper (de Kraker et al. 2018). The
COMBACTE project has been one of the first of the IMI programme New Drugs
4 Bad Bugs (ND4BB), which today represents an unprecedented partnership
between industry, academia and biotech organisations to combat antimicrobial
resistance in Europe. The EUR 650 million programme comprises currently eight
projects and has built the foundation for the IMI2 Accelerator programme.

Collaborative networks with a proven record of high-quality research increase
their opportunities for further collaboration and funding, thus becoming sustained. A
very fitting example is that of the IMI consortium “European Autism Interventions –
A Multicentre Study for Developing New Medications”, EU-AIMS (European
Autism Interventions – A Multicentre Study for Developing New Medications
Project EU-AIMS 2012), identifying markers of autism that would help in earlier
and more accurate diagnosis, prognosis and the development of new therapies. The
project applied the highest standard of research quality, which among others led to
five “letters of support” from the European Medicines Agency (EMA) (European
Medicines Agency 2015). These recognised results are the foundations of the
follow-up project “Autism Innovative Medicine Studies-2-Trials”, AIMS-2-Trials
(Autism Innovative Medicine Studies-2-Trials AIMS-2-Trials Project 2018), which
is a 115 million EUR cross-Atlantic collaborative initiative, nearly four times the
resources of EU-AIMS.

4 The Importance of Effective Governance in Collaborative
Research

Not all collaborations are successful in delivering high-quality research. For having a
positive impact on quality of research, a collaboration must be based on transparency
among all involved stakeholders, meaning clearly established governance rules for
the implementation of the research work plan and sharing of knowledge thereof.
Rules have to be in place from the very start of the collaboration, be communicated
to all collaborators and be agile and not overly complicated, to avoid being seen as a
burden instead of an enabler. An efficient governance is necessary to ensure good
working relationships in the collaboration, a sense of high degree of accountability in
all partners and spirit of joint responsibility while also keeping expectations realistic.
Governance has to provide leadership for the collaborator’s team and create a “trust
environment” which in the case of the most complex partnerships might need a third
party to act as a neutral broker, like in the case of the IMI Programme Office
(Goldman 2012).

The collaboration governance must guarantee respect for the rights of all
collaborators and that the collaboration will be rewarding for all involved. This
latter can be seen as a challenge when trying to balance, on one side, the need for
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open innovation and knowledge sharing and, on the other, the need for intellectual
property rights (IPRs) to be protected. A one-size-fits-all solution does not exist for
all types of research collaborations, but some principles can be generally applicable.
First, there needs to be a built-in degree of flexibility when establishing the rules for
IPRs, with opportunity for adaptation with the development of the research
programme. Secondly, IPR agreements must be agreed before the collaboration
starts, providing consortia with less legal uncertainty and avoiding useless a
posteriori discussions. Most importantly legal agreements cannot and must not
substitute a well-thought-through high-quality research programme. All partners
have to have a clear understanding about their own knowledge/data/assets that
they need to share with the other collaborators for the implementation of a high-
quality research programme and achievement of its objectives. These objectives and
the pathway to achieve them have to be clear and sound.

To achieve impact and promote sustainability, all partners have to agree on the
sharing of the research outputs among themselves and with third parties. In the IMI
programme, all consortium members sign a consortium agreement before the start of
the activities which details the collaboration rules of play and governance. A
template prepared by EFPIA shows what a consortium agreement might look like
(European Federation of Pharmaceutical Industries and Associations 2015). In
addition, the IMI Programme Office plays a neutral role and offers impartial advice
to all partners during negotiations on IPRs. This process and support ensure that the
resulting agreement is in line with the IMI IPRs provisions and does not leave some
project partners at a disadvantage (Laverty and Poinot 2014).

A good governance structure is important in collaborative research but is not
sufficient for success. It has to be mentioned that collaborative research can still be
silos research, where the collaborators share a pot of funding but otherwise work
mainly independently just continuing and expanding their own internal research
programme. Such “collaborations” represent a missed opportunity for cross-
fertilisation and learnings and thus are not very inductive to research quality. In
my own experience, these are also the consortia where most IPR-related issues arise
and the signature of the consortium agreement might be delayed by lengthy, often
circular, discussions.

5 On Data Sharing, Collaborative Research and Research
Quality

Reluctance to data sharing has been shown to correlate with poor quality of the
research results; see, for example, the paper by Wicherts et al. (Wicherts et al. 2011).
Reasons for not sharing data range from lack of time and resources (Tenopir et al.
2011) to legal issues and fear for data misuse (Majumder et al. 2016; Parse Insight
Consortium 2019).

Still, especially in collaborative research, data sharing is a fundamental factor for
the delivery of high-quality research. It is essential for increasing reproducibility and
transparency in research. This has been now recognised by publishers, by major
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research organisations and by funders (e.g. the Transparency and Openness Promo-
tion guidelines (Nosek et al. 2015), a recent Nature Editorial (Nature Editorial 2017)
and the OpenAIRE initiative of the European Framework Programme H2020
(European Commission 2014)).

Data sharing has to be enabled by the upfront creation of a framework that is
acceptable and accepted by all partners, which is not always a simple endeavour. The
IMI “Diabetes Research on patient stratification”, DIRECT (Diabetes Research on
Patient Stratification DIRECT Project 2013), consortium has shared its experience
and learnings on how to develop a governance for data sharing in their collaboration
in a recent paper published in Life Sciences, Society and Policy (Teare et al. 2018).
What they show is that designing an internal governance structure to oversee access
to a centralised database for research purposes can be a time-consuming and
politically sensitive process. Partners might have different expectations and
requirements for taking part. Moreover, especially for international collaborations,
it might be tricky to provide a framework that is acceptable legally and ethically
across borders and still is sufficiently speedy to allow research.

However, several solutions are emerging to address these concerns and enable
data sharing, such as those developed by the IMI “European Medical Information
Framework”, EMIF, project (Trifan et al. 2018) and the Cohen Veterans Bioscience
Brain Commons (Grossman 2017). Another useful resource to help the research
community in the sharing of data and samples has been delivered by partners from
the IMI BTCure consortium jointly with other experts from around the world. The
“International Charter of principles for sharing bio-specimens and data” addresses
the points necessary to enable effective and transparent data and samples sharing and
even provides a general template for data and material sharing (Mascalzoni et al.
2015).

Once data sharing is enabled, it delivers significant benefits for both those sharing
and the scientific community at large and is an important first step for sustainability
of results. This can be exemplified by the IMI “Unrestricted leveraging of targets for
research advancement and drug discovery”, ULTRADD (Unrestricted Leveraging of
Targets for Research Advancement and Drug Discovery ULTRADD Project 2016),
project data policy. ULTRADD aims to identify and validate under-explored protein
targets by profiling target-directed chemical and antibody probes in patient-cell-
derived assays at the highest quality, providing biomarker and phenotypic read-outs
in a more disease-relevant context. The consortium adopted a policy of full open
access. The wider scientific community will therefore have ready access to much of
the knowledge, data and tools generated by the project. True to its promise, the
consortium has already made available to the broad community the first batch of
high-quality datasets (Cell Assay Datasets 2017).

The sharing of high-quality data strongly facilitates moving research forward
providing the bases for new applications and benefit to society. The IMI “Integrating
bioinformatics and chemoinformatics approaches for the development of Expert
systems allowing the in silico prediction of toxicities” (eTOX) consortium devel-
oped innovative strategies and novel software tools to better predict the safety
and side effects of new candidate medicines for patients (Sanz et al. 2017).
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The achievements were enabled by a unique shared database based on high-quality
legacy information provided by EFPIA companies from their own preclinical drug
toxicity studies. By the end of the project, the database has information from over
8,000 toxicity studies on almost 2,000 compounds, of which around a fifth are
approved drugs. Several of the in silico algorithms developed by eTOX are now
used by the pharmaceutical industry for better prediction of potential drug toxicities.

Data and knowledge in order to be shareable need to be properly managed. This
can be difficult for researchers working on their own which might lack the expertise,
experience, technical solutions and resources for proper data and knowledge man-
agement (DKM) during and after a project. At IMI and elsewhere, research
collaborations involve more and more experts and resourcing for DKM, which is a
very positive trend. The inclusion of relevant provisions for DKM in any research
collaboration will enhance the quality of the research output with a cascade effect for
the quality of any future project that will build on such background. A good data
management and data stewardship are fundamental for data quality. Science funders,
publishers and governmental agencies are beginning to require data management
and stewardship plans for data generated by their grantees (see, e.g. the open access
and data management for projects of IMI (Open Access and Data Management for
Projects 2015)). Findable, Accessible, Interoperable and Reusable (FAIR) data
(Wilkinson et al. 2016) will become more attractive for reuse and the data generators
sought for new collaborations, thus automatically ensuring the sustainability of their
results. Making it convenient for scientists to describe, deposit and share their data
and to access data from others, plus promulgating best data practices through
education and awareness, will help the future of science as well as the future of
data preservation.

The awareness of this problem led to the creation of the IMI “Delivering
European Translational Information & Knowledge Management Services” eTRIKS
project. The eTRIKS delivered an open, sustainable research informatics and analyt-
ics platform for use by IMI (and other) projects with knowledge management needs.
In addition, the project partners provide associated support, expertise and services to
ensure users gain the maximum benefit from the platform. One important resource is
the eTRIKS/ELIXIR-LU – IMI Data Catalogue (eTRIKS/ELIXIR-LU – IMI Data
Catalogue 2015), a sustained a metadata repository linking the massive data avail-
able in a global system that can be optimally leveraged by scientists. Researchers can
access the available data and are encouraged to add their data in the database to
create awareness and recognition of their data contribution and demonstrate value of
partner projects.

Despite the increased emphasis on the importance for DKM, often there is yet not
enough awareness about the DKM needs and resources for a project. The gaps are
identified too late, when activities are already up and running and all budget
committed elsewhere; thus more attention is needed to this critical area in all its
aspects, technical, ethical, societal and legal.
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6 Enlarging the Collaborative Research Environment:
Regulators and Patients as Important Partners
for Research Quality

For the outputs of a biomedical translational research collaboration to impact health
care, the involvement with regulators and patients is an important success factor, not
the least because of the positive influence on research quality.

A partnership with regulators increases the awareness and drive of a consortium
for the highest-quality results. The involvement of regulators (and in some cases also
health technology assessment bodies and payers) is of high benefit to ensure that the
project output meets the required standards and is of quality good enough to be taken
up and used in drug development or medical practice. For example, the IMI
“Understanding chronic pain and improving its treatment” EUROPAIN consortium
developed rigorous processes for quality assurance of centres using in a standardised
way quantitative sensory testing (QST) for measuring pain in patients. This is a
novel approach for stratification of patients in clinical trials for pain medicines
(Baron et al. 2017; Vollert et al. 2015). EUROPAIN engaged with the European
Medicines Agency (EMA) to discuss their approach and results (The Innovative
Medicines Initiative 2017a), and their approaches were considered in the updated
guidelines for the development of medicines for pain treatment (European Medicines
Agency 2016).

The IMI actively encourages to involve regulators as early as possible in the
research work plan and has published specific guidelines for consortia (The Innova-
tive Medicines Initiative 2017b). Many IMI projects have benefited from such
interaction (Goldman et al. 2015). Similar approach is that of the Accelerating
Medicines Partnership (AMP) (Accelerating Medicines Partnership AMP 2014)
where the Federal Drug Administration (FDA) is a formal partner and of the Critical
Path Institute (C-Path). C-Path has a large portfolio of initiatives where scientific
rigour is at the basis of consensus building among participating scientists from
industry and academia and the FDA to deliver new drug discovery tools (DDTs)
for a given use in product development (Critical Path Institute C-Path 2005). This
combination of good research practice and regulatory acceptance has allowed many
of C-Path FDA-qualified DDTs to become open standards for the scientific
community.

Researchers are now well aware that patients bring unique knowledge and skills
to projects, which can significantly help to improve the quality of research. An
exemplar collaboration where patients have actively contributed to improve research
quality is the IMI “Unbiased Biomarkers for the Prediction of Respiratory Disease
Outcomes” (UBIOPRED) project. Patients played a big role in the project, including
participation in the scientific and the ethics boards. They helped in many aspects of
the project and contributed to the fine-tuning of the research protocols. The consor-
tium has published a very useful guide for effective engagement of patients in
biomedical research (Geissler et al. 2017).
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7 Why Scientists Should Consider Quality as a Key Parameter
for Their Collaborative Research from the Very Start

As already stressed in the previous sections, there are multiple reasons why research
quality and success in a research collaboration go hand in hand. When working as a
consortium, researchers will create a collective reputation, dependencies between
partners and shared ethical responsibilities. They will also have to agree in the
sharing of resources and funding, which may be significant in amount and of high
value from the financial and scientific point of view. It is at this very early stage that a
collaborative team has to align the expectation for high research quality. To achieve
impact and success in their collaborative research, scientists need to get to a common
understanding and agreement on how they will deliver high-quality results ideally
taking advantage of common standards and guidance when available. It is very
important that this occurs upfront, before picking up the pen for writing the first line
of the joint grant. In fact, it is not possible to “fix” the quality of results once they
have been already delivered; this will have only a “cosmetic” effect that will be
detrimental both for those producing the results and for those that will base their
independent work on such evidence. Results that will not be used or will not be
found useful because of poor quality will be wasted and a waste of the public or
private funding. Thus, there is an important ethical value in thriving for research
quality and for doing so from the very beginning.

In the world of collaborative research, reputation is of paramount importance as
well as trust. If a researcher delivers results of poor quality, this will influence
strongly and negatively her/his reputation. In a consortium, this might affect the
reputation of everybody. Delivering poor-quality results might generate mistrust in a
collaboration and thus jeopardise its implementation. In addition, other scientists
will not trust either the team or the results delivered, which might affect not only the
single scientist in a collaboration but also his/her institution and/or students and the
other collaborators.

8 Conclusions

Collaborative research in the modern world is becoming the standard. But, as
confidence in the communication media is suffering from the rise of “fake news”
and the poor quality of large amount of news and data shared on the social networks,
to avoid a similar fate for research results, it is vital that collaboration in research
goes hand in hand with quality in research.

Luckily the awareness of the importance of fostering high research quality and
rigour is emerging worldwide. In Europe, The IMI “European Quality in Preclinical
Data” (EQIPD) project will deliver simple recommendations to facilitate data quality
without affecting innovation in the challenging field of preclinical neuroscience
research. Cornerstone of the work is agreeing across stakeholders on the key
variables influencing quality and delivering a prospectively validated consensus
quality management system. EQIPD will importantly foster education and training
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on the principles and application of quality and rigour via an online educational
platform providing certified education and training (EQIPD Consortium 2018). In
the United States, there is a strong attention to rigour and quality in research, and the
National Institute for Health has developed a specific guidance for grantees
(National Institute for Health 2018), while the National Heart, Lung and Blood
Institute has published the “Study Quality Assessment Tools” resource (National
Heart, Blood and Lung Institute 2017). Thus, there are several resources available
(only few mentioned above), and more are emerging to help researchers deliver
excellent, robust research outputs of the highest impact. However, it is important that
all efforts are coordinated and aligned globally: there is still an issue of fragmenta-
tion. In addition, while the effort of the EQIPD project represents a first important
European effort to foster rigour and quality in research, European researchers still
lack a common guidance. To be effective such guidance must be agreed across
countries and be applicable both in national and international/Europe-wide
collaborations.

The upcoming Framework programme Horizon Europe has the specific objective
“to support the creation and diffusion of high-quality new knowledge, skills,
technologies and solutions to global challenges” (Dalli 2018). To make this objec-
tive a reality, stakeholders in research and development in Europe and beyond have
to put in place an aligned and effective policy for good research practice, in a
collaborative way.

References

Accelerating Medicines Partnership AMP (2014) https://www.nih.gov/research-training/
accelerating-medicines-partnership-amp. Accessed 20 Feb 2019

Autism Innovative Medicine Studies-2-Trials AIMS-2-Trials Project (2018). https://www.aims-2-
trials.eu. Accessed 14 Feb 2019

Baron R, Maier C, Attal N et al (2017) Peripheral neuropathic pain: a mechanism-related organizing
principle based on sensory profiles. Pain 158(2):261–272

Be The Cure” BTCure Project (2012) http://btcure.eu. Accessed 12 Feb 2019
Boehnke K, Iversen PW, Schumacher D et al (2016) Assay establishment and validation of a high-

throughput screening platform for three-dimensional patient-derived colon cancer organoid
cultures. J Biomol Screen 21(9):931–941

BTCure Consortium (2012) WP1 standardization workshop – summary for external communica-
tion. Available via BTCure. http://btcure.eu/wp-content/uploads/2012_03_26-BTCure-WP1-
workshop-summary-final_incl_images.pdf

Cell Assay Datasets (2017) UltraDD project. https://www.ultra-dd.org/tissue-platforms/cell-assay-
datasets. Accessed 14 Feb 2019

Combatting Bacterial Resistance in Europe” COMBACTE Project (2015) https://www.combacte.
com/about/about-combacte-net-detail/0. Accessed 12 Feb 2019

Critical Path Institute C-Path (2005) https://c-path.org/about/. Accessed 20 Feb 2019
Hubert Dalli (2018) The horizon Europe framework programme for research and innovation

2021–2027. Available via EPRS. http://www.europarl.europa.eu/RegData/etudes/BRIE/2018/
627147/EPRS_BRI(2018)627147_EN.pdf. Accessed 20 Feb 2019

Research Collaborations and Quality in Research: Foes or Friends? 395

https://www.nih.gov/research-training/accelerating-medicines-partnership-amp
https://www.nih.gov/research-training/accelerating-medicines-partnership-amp
https://www.aims-2-trials.eu
https://www.aims-2-trials.eu
http://btcure.eu
http://btcure.eu/wp-content/uploads/2012_03_26-BTCure-WP1-workshop-summary-final_incl_images.pdf
http://btcure.eu/wp-content/uploads/2012_03_26-BTCure-WP1-workshop-summary-final_incl_images.pdf
https://www.ultra-dd.org/tissue-platforms/cell-assay-datasets
https://www.ultra-dd.org/tissue-platforms/cell-assay-datasets
https://www.combacte.com/about/about-combacte-net-detail/0
https://www.combacte.com/about/about-combacte-net-detail/0
https://c-path.org/about/
http://www.europarl.europa.eu/RegData/etudes/BRIE/2018/627147/EPRS_BRI(2018)627147_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/BRIE/2018/627147/EPRS_BRI(2018)627147_EN.pdf


DDMoRe Model Repository (2017) DDMore. http://repository.ddmore.eu. Accessed 12 Feb 2019
de Kraker M, Sommer H, de Veide F et al (2018) Optimizing the design and analysis of clinical

trials for Antibacterials against multidrug-resistant organisms: a white paper from
COMBACTE’s STAT-net. Clin Infect Dis 67(12):1922–1931

Diabetes Research on Patient Stratification DIRECT Project (2013) www.direct-diabetes.org.
Accessed 12 Feb 2019

Drug Disease Model Resources DDMoRe Project (2012) www.ddmore.eu. Accessed 12 Feb 2019
ENCODE Consortium (2017) Data standards. Available via ENCODE. https://www.encodeproject.

org/data-standards. Accessed 12 Feb 2019
Encyclopedia of DNA Elements (ENCODE) (2019) https://www.genome.gov/10005107/the-

encode-project-encyclopedia-of-dna-elements. Accessed 12 Feb 2019
EQIPD Consortium (2018) EQIPD E-learning programme, preliminary version December 2018.

Available via EQIPD https://quality-preclinical-data.eu/our-findings/training/. Accessed 20 Feb
2019

eTRIKS/ELIXIR-LU – IMI Data Catalogue (2015) https://datacatalog.elixir-luxembourg.org/
about. Accessed 16 Feb 2019

European Autism Interventions – A Multicentre Study for Developing New Medications Project
EU-AIMS (2012) https://www.eu-aims.eu. Accessed 12 Feb 2019

European Commission (2014) OpenAIRE initiative of the European Framework Programme
H2020. Available via OPENAIRE. https://www.openaire.eu. Accessed 14 Feb 2019

European Federation of Pharmaceutical Industries and Associations (2015) EFPIA IMI2 consor-
tium agreement template. Available via EFPIA. https://efpia.eu/media/.../efpia-model-consor
tium-agreement-for-imi2-actions-2.docx. Accessed 14 Feb 2019

European Medicines Agency (2015) Letters of support EU-AIMS. Available via EMA. https://
www.ema.europa.eu/en/search/search?search_api_views_fulltext¼EU-AIMS. Accessed
20 Feb 2019

European Medicines Agency (2016) Clinical development of medicinal products intended for the
treatment of pain. Available via EMA. https://www.ema.europa.eu/en/clinical-development-
medicinal-products-intended-treatment-pain. Accessed 20 Feb 2019

Faure JE, Dyląg T, Norstedt I et al (2018) The European innovative medicines initiative: progress to
date. Pharm Med 32:243–249

Geissler J, Ryll B, Leto di Priolo S et al (2017) Improving patient involvement in medicines
research and development: a practical roadmap. Ther Innov Reg Sci 51(5):612–619

Goldman M (2012) The innovative medicines initiative: a European response to the innovation
challenge. Clin Pharmacol Ther 91(3):418–425

Goldman M, Seigneuret N, Eichler HG (2015) The innovative medicines initiative: an engine for
regulatory science. Nat Rev Drug Dis 14:1–2

Grossman RL (2017) An introduction to the brain commons. Available via Cohen Veterans
Bioscience. https://www.cohenveteransbioscience.org/2017/09/27/an-introduction-to-the-
brain-commons. Accessed 14 Feb 2019

Holmdahl R (2015) Animal models for rheumatoid arthritis Available via HsTalks. https://hstalks.
com/t/3076/animal-models-for-rheumatoid-arthritis/?biosci. Accessed 12 Feb 2019

Laverty H and Poinot M (2014) IP policy forum: intellectual property rights (IPR) in collaborative
drug development in the EU: helping a European public-private partnership deliver – the need
for a flexible approach to IPR. 18 Marq. Intellectual Property L Rev 31. Available via Marquette
University. https://scholarship.law.marquette.edu/iplr/vol18/iss1/19. Accessed 14 Feb 2019

Majumder MA, Cook-Deegan R, McGuire AL (2016) Beyond our borders? Public resistance to
global genomic data sharing. PLoS Biol 14(11):e2000206

Mascalzoni D et al (2015) International Charter of principles for sharing bio-specimens and data.
Eur J Hum Genet 23:721–728

Mechanism-Based Integrated Systems for the Prediction of Drug-Induced Liver Injury MIP-DILI
Project (2012) http://www.mipdili.eu. Accessed 12 Feb 2019

396 E. Vaudano

http://repository.ddmore.eu
http://www.direct-diabetes.org
http://www.ddmore.eu
https://www.encodeproject.org/data-standards
https://www.encodeproject.org/data-standards
https://www.genome.gov/10005107/the-encode-project-encyclopedia-of-dna-elements
https://www.genome.gov/10005107/the-encode-project-encyclopedia-of-dna-elements
https://quality-preclinical-data.eu/our-findings/training/
https://datacatalog.elixir-luxembourg.org/about
https://datacatalog.elixir-luxembourg.org/about
https://www.eu-aims.eu
https://www.openaire.eu
https://efpia.eu/media/efpia-model-consortium-agreement-for-imi2-actions-2.docx
https://efpia.eu/media/efpia-model-consortium-agreement-for-imi2-actions-2.docx
https://www.ema.europa.eu/en/search/search?search_api_views_fulltext=EU-AIMS
https://www.ema.europa.eu/en/search/search?search_api_views_fulltext=EU-AIMS
https://www.ema.europa.eu/en/search/search?search_api_views_fulltext=EU-AIMS
https://www.ema.europa.eu/en/clinical-development-medicinal-products-intended-treatment-pain
https://www.ema.europa.eu/en/clinical-development-medicinal-products-intended-treatment-pain
https://www.cohenveteransbioscience.org/2017/09/27/an-introduction-to-the-brain-commons
https://www.cohenveteransbioscience.org/2017/09/27/an-introduction-to-the-brain-commons
https://hstalks.com/t/3076/animal-models-for-rheumatoid-arthritis/?biosci
https://hstalks.com/t/3076/animal-models-for-rheumatoid-arthritis/?biosci
https://scholarship.law.marquette.edu/iplr/vol18/iss1/19
http://www.mipdili.eu


Methods for Systematic Next Generation Oncology Biomarker Development ONcoTRACK Project
(2016) http://www.oncotrack.eu/home/index.html. Accessed 12 Feb 2019

National Heart, Blood and Lung Institute (2017) Study quality assessment tools. Available via
NHBLI. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed
20 Feb 2019

National Institute for Health (2018) Guidance: rigor and reproducibility in grant applications.
Available via NIH. https://grants.nih.gov/policy/reproducibility/guidance.htm. Accessed
20 Feb 2019

Nature Editorial (2017) On data availability, reproducibility and reuse. Nat Cell Biol 19:259
Nosek BA et al (2015) Promoting an open research culture. Science 348(6242):1422–1425
Open Access and Data Management for Projects (2015) Available via the innovative medicines

initiative. https://www.imi.europa.eu/resources-projects/open-access-and-data-management-
projects. Accessed 12 Feb 2019

Parse Insight Consortium (2019) Insight into digital preservation of research outputs in Europe.
Available via Liber europe. https://libereurope.eu/wp-content/uploads/2010/01/PARSE.
Insight.-Deliverable-D3.4-Survey-Report.-of-research-output-Europe-Title-of-Deliverable-Sur
vey-Report.pdf. Accessed 14 Feb 2019

Sanz F et al (2017) Legacy data sharing to improve drug safety assessment: the eTOX project. Nat
Rev Drug Discov 16:812

Schütte M, Risch T, Abdavi-Azar N et al (2017) Molecular dissection of colorectal cancer in
pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat
Commun 10(8):14262

Sison-Young RL, Lauschke VM, Johannet E et al (2017) A multicenter assessment of single-cell
models aligned to standard measures of cell health for prediction of acute hepatotoxicity. Arch
Toxicol 91(3):1385–1400

Stem Cells for Biological Assays of Novel Drugs and Predictive Toxicology Project (2014)
STEMBANCC. https://stembancc.org. Accessed 12 Feb 2019

Teare HJA, de Masi F, Banasik K et al (2018) The governance structure for data access in the
DIRECT consortium: an innovative medicines initiative (IMI) project. Life Sci Soc Policy 14:20

Tenopir C, Allard S, Douglass K et al (2011) Data sharing by scientists: practices and perceptions.
PLoS One 6(6):e21101

The Innovative Medicines Initiative. (2009) https://www.imi.europa.eu. Accessed 12 Feb 2019
The Innovative Medicines Initiative (2017a) ‘More successful than what we thought possible’ – an

interview with the Europain project coordinator. Available via IMI https://www.imi.europa.eu/
projects-results/success-stories-projects/more-successful-what-we-thought-possible-interview.
Accessed 21 Feb 2019

The Innovative Medicines Initiative (2017b) Guidelines on engaging with regulators. Available via
IMI. https://www.imi.europa.eu/resources-projects/guidelines-engaging-regulators. Accessed
20 Feb 2019

The Innovative Medicines Initiative Radical Collaborations (2018) Available via IMI. https://www.
imi.europa.eu/projects-results/success-stories-projects/radical-collaboration-shaking-pharma
ceutical-industry. Accessed 12 Feb 2019

Trifan A et al (2018) A methodology for fine-grained access control in exposing biomedical data.
In: Building continents of knowledge in oceans of data: the future of co-created eHealth series
studies health technology and informatics, vol 247. IOS Press, Amsterdam, pp 561–565

Unrestricted Leveraging of Targets for Research Advancement and Drug Discovery ULTRADD
Project (2016) https://www.ultra-dd.org. Accessed 12 Feb 2019

Vollert J, Mainka T, Baron R et al (2015) Quality assurance for quantitative sensory testing
laboratories: development and validation of an automated evaluation tool for the analysis of
declared healthy samples. Pain 156(12):2423–2430

Research Collaborations and Quality in Research: Foes or Friends? 397

http://www.oncotrack.eu/home/index.html
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://grants.nih.gov/policy/reproducibility/guidance.htm
https://www.imi.europa.eu/resources-projects/open-access-and-data-management-projects
https://www.imi.europa.eu/resources-projects/open-access-and-data-management-projects
https://libereurope.eu/wp-content/uploads/2010/01/PARSE.Insight.-Deliverable-D3.4-Survey-Report.-of-research-output-Europe-Title-of-Deliverable-Survey-Report.pdf
https://libereurope.eu/wp-content/uploads/2010/01/PARSE.Insight.-Deliverable-D3.4-Survey-Report.-of-research-output-Europe-Title-of-Deliverable-Survey-Report.pdf
https://libereurope.eu/wp-content/uploads/2010/01/PARSE.Insight.-Deliverable-D3.4-Survey-Report.-of-research-output-Europe-Title-of-Deliverable-Survey-Report.pdf
https://stembancc.org
https://www.imi.europa.eu
https://www.imi.europa.eu/projects-results/success-stories-projects/more-successful-what-we-thought-possible-interview
https://www.imi.europa.eu/projects-results/success-stories-projects/more-successful-what-we-thought-possible-interview
https://www.imi.europa.eu/resources-projects/guidelines-engaging-regulators
https://www.imi.europa.eu/projects-results/success-stories-projects/radical-collaboration-shaking-pharmaceutical-industry
https://www.imi.europa.eu/projects-results/success-stories-projects/radical-collaboration-shaking-pharmaceutical-industry
https://www.imi.europa.eu/projects-results/success-stories-projects/radical-collaboration-shaking-pharmaceutical-industry
https://www.ultra-dd.org


Volpato V, Smith J, Sandor C et al (2018) Reproducibility of molecular phenotypes after long-term
differentiation to human iPSC-derived neurons: a multi-site omics study. Stem Cell Rep 11
(4):897–911

Wicherts JM, Bakker M, Molenaar D (2011) Willingness to share research data is related to the
strength of the evidence and the quality of reporting of statistical results. PLoS One 6(11):
e26828

Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for
scientific data management and stewardship. Sci Data 3:160018

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

398 E. Vaudano

http://creativecommons.org/licenses/by/4.0/


Costs of Implementing Quality in Research
Practice

O. Meagan Littrell, Claudia Stoeger, Holger Maier, Helmut Fuchs,
Martin Hrabě de Angelis, Lisa A. Cassis, Greg A. Gerhardt,
Richard Grondin, and Valérie Gailus-Durner

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 German Mouse Clinic: ISO 9001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Our Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Our Team and Main Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Needs Concerning Quality Management and Why ISO 9001 . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Payoffs/Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Lessons Learned/Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 University of Kentucky Good Research Practice (GRP) Resource Center . . . . . . . . . . . . . . . . . . 12
3.1 Our Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

O. Meagan Littrell and Claudia Stoeger contributed equally to this work.

O. Meagan Littrell · G. A. Gerhardt · R. Grondin
University of Kentucky Good Research Practice Resource Center and Department of Neuroscience,
Lexington, KY, USA

C. Stoeger · H. Maier · H. Fuchs · V. Gailus-Durner (*)
German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German
Research Center for Environmental Health, Neuherberg, Germany
e-mail: gailus@helmholtz-muenchen.de

M. Hrabě de Angelis
German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German
Research Center for Environmental Health, Neuherberg, Germany

Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München,
Freising, Germany

German Center for Diabetes Research (DZD), Neuherberg, Germany

L. A. Cassis
University of Kentucky Office of the Vice President for Research and Department of Pharmacology
and Nutritional Sciences, Lexington, KY, USA

# The Author(s) 2019
A. Bespalov et al. (eds.), Good Research Practice in Non-Clinical Pharmacology
and Biomedicine, Handbook of Experimental Pharmacology 257,
https://doi.org/10.1007/164_2019_294

399

http://crossmark.crossref.org/dialog/?doi=10.1007/164_2019_294&domain=pdf
mailto:gailus@helmholtz-muenchen.de


3.2 Our Stakeholder’s Interests and Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 How to Address Data Irreproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Why Build a GLP-Compliant Quality Management System in Academia . . . . . . . . . . . 15
3.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Payoffs/Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Lessons Learned/Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Conclusions: Investing in Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Abstract
Using standardized guidelines in preclinical research has received increased
interest in light of recent concerns about transparency in data reporting and
apparent variation in data quality, as evidenced by irreproducibility of results.
Although the costs associated with supporting quality through a quality manage-
ment system are often obvious line items in laboratory budgets, the treatment of
the costs associated with quality failure is often overlooked and difficult to
quantify. Thus, general estimations of quality costs can be misleading and
inaccurate, effectively undervaluing costs recovered by reducing quality defects.
Here, we provide examples of quality costs in preclinical research and describe
how we have addressed misconceptions of quality management implementation
as only marginally beneficial and/or unduly burdensome. We provide two
examples of implementing a quality management system (QMS) in preclinical
experimental (animal) research environments – one in Europe, the German
Mouse Clinic, having established ISO 9001 and the other in the United States,
the University of Kentucky (UK), having established Good Laboratory Practice-
compliant infrastructure. We present a summary of benefits to having an effective
QMS, as may be useful in guiding discussions with funders or administrators to
promote interest and investment in a QMS, which ultimately supports shared,
mutually beneficial outcomes.

Keywords
Automation · Cost of quality (CoQ) · Documentation · German Mouse Clinic
(GMC) · Good laboratory practice (GLP) · ISO 9001 · Quality management
system (QMS) · Reproducibility

Abbreviations

CoQ Cost of quality
GLP Good laboratory practice
GMC German Mouse Clinic
GRP Good research practice
HMGU Helmholtz Zentrum München
IMPC International Mouse Phenotyping Consortium
IT Information technology
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KPIs Key performance indicators
LIMS Laboratory information management system
QA Quality assurance
QC Quality control
QMS Quality management system
SOPs Standard operating procedures
UK University of Kentucky
USD US dollar

1 Introduction

The mention of certified or standardized laboratory requirements to other scientists is
often met with apprehension, a skeptical expression, and concerned questions about
taking on additional bureaucracy and time-consuming paperwork in addition to
introducing what is perceived as unnecessary limits for creative and innovative
scientific freedom. However, we want to dispel misconceptions that implementing
quality management in research practice is only marginally beneficial or too burden-
some and costly to justify. Furthermore, the treatment of quality costs is misleading
and incomplete if regarding only the costs of “doing something” – in this case
implementing quality management. This approach, known as “omission bias,”
ignores the fact that “not doing something,” i.e., not implementing quality manage-
ment, also comes with costs, some clear and many others hidden or absent from
general estimations.

We will describe two examples of implementing quality management systems in
preclinical experimental (animal) research environments – one in Europe, the Ger-
man Mouse Clinic, having established ISO 9001 and the other in the United States,
the University of Kentucky (UK), having established Good Laboratory Practice
(GLP)-compliant infrastructure. In the end, we hope to have made a convincing
case for taking a long-term approach to promoting quality, where the costs are
comparatively minor and the benefits exceed initial “activation energy” and
commitments needed for implementation. Finally, we present a summary of benefits
to having an effective QMS, as it may be useful in guiding discussions with funders
or administrators to promote interest and investment in a QMS, which ultimately
supports shared, mutually beneficial outcomes.

2 German Mouse Clinic: ISO 9001

2.1 Our Mission

The German Mouse Clinic (GMC) is part of the Helmholtz Zentrum München
(HMGU) and located in Munich, Germany. Understanding gene function in general,
and furthermore the causation, etiology, and factors for the onset of genetic diseases,
is the driving force of the GMC. Established in 2001 as a high-throughput
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phenotyping platform for the scientific community, we have set up different
phenotyping pipelines covering various organ systems and disease areas (Gailus-
Durner et al. 2005, 2009; Fuchs et al. 2017; www.mouseclinic.de).

Standardized phenotyping is designated to the areas of behavior, bone and
cartilage development, neurology, clinical chemistry, eye development, immunol-
ogy, allergy, steroid metabolism, energy metabolism, lung function, vision and pain
perception, molecular phenotyping, cardiovascular analyses, and pathology. In a
comprehensive primary screen, we can analyze 700+ parameters per mouse and
collect 400+ additional metadata (Maier et al. 2015). Our collaboration partners have
to provide a cohort of age-matched mutant animals from both sexes and the
corresponding wildtype littermates. Expectations for high-quality and scientifically
valid outcomes are very high, due to widespread financial and time resources spent
collectively. Therefore, study design, performance of experiments, material and
equipment, as well as training of personnel have to be well coordinated, harmonized,
and advanced.

2.2 Our Team and Main Stakeholders

Our GMC team consists of scientists with expertise in a specific disease area (e.g.,
energy metabolism or pathology), technicians performing the phenotypic analysis,
animal caretakers, computer scientists, a management team, and the director. In total,
we have approximately 50 team members with a third of the staff working in the
animal facility barrier, which represents an additional challenge to maintaining
efficient communication crucial for successful output and teamwork.

Collaboration partners who send us mouse models for phenotypic analysis are
scientists or clinicians from groups at the HMGU and many different academic
institutions, universities, hospitals, or industry from Germany, Europe, and other
countries/continents like the United States, Australia, and Asia. Since the beginning
of the GMC, we have analyzed mice from 170 collaboration partners/laboratories
from 20 different countries.

The GMC is a partner in a number of consortia like the International Mouse
Phenotyping Consortium (IMPC, a consortium of so-called mouse clinics all over
the world, http://www.mousephenotype.org, Brown and Moore 2012; Brown et al.
2018) and INFRAFRONTIER (https://www.infrafrontier.eu; Raess et al. 2016).
Together with the European mouse clinics, the GMC has developed standardized
phenotyping protocols (standard operating procedures (SOPs)) in the European
EUMODIC program (Hrabe de Angelis et al. 2015). These SOPs have been further
developed for the use in the IMPC (https://www.mousephenotype.org/impress).
Starting on the European (EUMODIC) and expanding to the international level
(IMPC), we had to harmonize equipment, handling of animals, and documentation
of laboratories to enable the compatibility of phenotyping data from different
facilities around the globe.
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2.3 Needs Concerning Quality Management and Why ISO 9001

There are logistical, experimental, and analytical challenges of systemic, large-scale
mouse phenotyping to ensure high-quality phenotyping data. The mutant mice we
receive for analysis are generated by different technologies (e.g., gene editing,
knockout, knock-in) and on various genetic backgrounds. As a unique feature, we
import age-matched cohorts of mice from other animal facilities for the phenotyping
screening.

Therefore, several processes need to be quality-controlled in many different areas,
including project management (request procedure, reporting), legal requirements
(collaboration agreement, animal welfare, and gene technology regulations), scien-
tific processes (scientific question, study design, choice of phenotyping pipeline,
data analysis, reproducibility), capacity management (many parallel projects), and
knowledge and information management (sustain and transfer expertise, internal and
external communication). In order to cover this complex management situation, we
decided to implement a QMS within the GMC.

Being a partner in an international consortium allows benchmarking with centers
in similar environments. Due to this circumstance, our rationale for using the ISO
9001 standard was based on the following: (1) two other benchmark institutions with
similar scope had already adopted ISO 9001-based QMSs, and (2) our products,
consisting of research data, inference, and publications, are not regulated like data
of, e.g., safety, toxicity, or pharmacokinetic studies and clinical trial data used for a
new drug application to the regulatory authorities. Therefore, a process-based
system seemed to be most suitable for our needs.

An ISO 9001-based QMS is very general and serves as a framework to increase
quality in many aspects. In the GMC, we have implemented measures not only to
improve our processes but also to directly improve instruments and increase the
quality of our research results. To this end, the implementation of quality manage-
ment went hand in hand with investments in information technology (IT) structure
and software development.

2.4 Challenges

Building a QMS and going through the ISO 9001 certification process was a project
that required significant personnel effort and time (2 years in our case). Although
efforts should not be underestimated, they should be viewed within the context of
promoting benefits (see Sect. 2.6). To answer the question what resources are
required and how one can get started, we describe hereafter how the process was
carried out at the GMC as an example of implementing an ISO 9001 QMS in a
German Research Center setting, which includes project management and organi-
zation, the IT infrastructure, as well as social aspects.

Project Management and Organization After an introductory quality manage-
ment training by an expert consultant for all GMC staff, we formed a project
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management team consisting of a quality manager (lead), the two heads of the GMC,
the head of the IT group, and an affiliated project manager. An initial gap analysis
provided useful data about our status quo (e.g., inventory of existing documenta-
tion). In the beginning, the main tasks were (1) development of a project plan with
timelines and milestones, (2) defining “quality” in our biomedical research activities,
and (3) determination of the scope of the QMS.

GMC’s current strategy and future plans were reconsidered by establishing a
quality policy (highest possible standard of research quality) and corresponding
common quality objectives (specific, measurable, achievable, realistic, time-based
(SMART)). The relaunched version of the ISO 9001:2015 challenged us to compre-
hensively describe our context. The external context of the GMC includes political,
economic, social, and technological factors like animal welfare regulations, funding,
health and translational research for the society, and working with state-of-the-art
technologies. Our internal context is represented by our technical expertise (over
15 years of experience in mouse phenotyping), knowledge and technology transfer
(workshops), application and improvement of the 3 Rs (https://www.nc3rs.org.uk/),
and adherence to the rules of good scientific practice (GSP) and the ARRIVE
guidelines (Karp et al. 2015).

Implementation of the process approach was addressed by defining the GMC’s
key processes in a process model (Maier et al. 2015) and specifying related key
performance indicators (KPIs) (e.g., number of publications, trainings, reported
errors, measures of internal audits). Process descriptions were installed including
responsibilities, interfaces, critical elements, as well as risks and opportunities (risk-
based thinking) to ensure that processes are clearly understood by everyone, partic-
ularly new employees.

It is often claimed that the ISO 9001 documentation management increases
bureaucracy (Alič 2013). Therefore we did not create documents just for the sake
of the ISO 9001. Instead we revised existing phenotyping protocols (SOPs) by
adding essential topics (like data quality control (QC)) on the one hand and
implemented missing quality-related procedure instructions on the other hand
(e.g., regarding error management, data management, calibration, etc.). All
documents were transferred in a user-friendly standard format and made easily
retrievable (keyword-search) using commercial wiki software. A transparent docu-
mentation management system was successfully put into effect by implementing
these processes.

The constant improvement of our systemic mouse phenotyping processes is
continuously ensured by using established key elements of quality management
such as error management including corrective and preventive actions (CAPA), an
audit system, annual management reviews, and highly organized capacity and
resource management structures.

IT Infrastructure and Software Tools Although our custom-built data manage-
ment solution “MausDB” (Maier et al. 2008) has supported science and logistics for
many years, the decision to implement a QMS triggered a critical review of our
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entire IT infrastructure. As a result, we decided to adapt our IT structure according to
our broad process model (Maier et al. 2015) to deliver more reproducible data.

To this end, MausDB has been restructured into process-specific modules.
MausDB 2.0 is a state-of-the-art laboratory information management system
(LIMS) for automated data collection and data analysis (Maier et al. 2015).
Standardized R scripts for data visualization and statistics are custom-developed
for every phenotyping test and routinely applied. Numerous QC steps are built into
the LIMS, including validation of data completeness and data ranges (e.g.,
min/max). Additional modules cover planning of capacities and resources as well
as animal welfare monitoring and a project database tool for the improvement of
project management and project status tracking.

On a data management level, a series of SOPs regulate reproducible data
handling and organization. Comprehensive data monitoring allows detection of
data range shifts over time, eventually triggered by changes in methods or
machinery.

On the infrastructural level, a well-defined software development process built on
the Scrum methodology ensures proper IT requirements management. Thus, a
continuous improvement process can be applied to our IT tools. Script-based
automation of frequent tasks encompasses daily backups of data as well as software
build procedures. An “IT emergency SOP” has been developed to ensure well-
planned IT crisis management (e.g., in case of server failure) and provides checklists
and instructions for troubleshooting.

The challenges with IT-related issues described above were primarily of two
categories: resources and change management. Self-evidently, implementation of all
IT improvements required years of effort. However, the resulting overall process is
much more efficient and less error prone. Active change management was essential
in order to convince IT and non-IT staff that changes were necessary, although these
would affect daily work routines. In the end, employees have come to realize that
these processes save time and produce higher data quality.

Social Aspects In a preclinical research environment, the members of a research
group traditionally have a high level of freedom for work planning and execution of
scientific projects. Often, only one scientist conducts one detailed research project,
plans the next steps from day to day, and communicates progress to the group in
regular meetings. Therefore, a research environment encourages a self-responsible,
independent working structure, leaving room for innovative trial and error, and
supports both a creative and a competitive mind.

When you plan to implement a QMS in a preclinical research environment, you
want to preserve the positive aspects of open mindedness and combine them with
more regulated processes. As the initiator, you might find yourself in the position
where you see both the opportunities and possible restrictions like limitations for
innovative and unrestricted science. We decided to limit the certification to the
standard screening pipelines in the beginning and not to force every research
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project into the ISO framework. Still, we encountered expected resistance to the
implementation, since people feared losing freedom and control of their work
structure, as well as disruption with unnecessary additional bureaucracy. This is, in
every case, a complex psychological situation. Therefore, the implementation of a
QMS takes time, understanding, sympathy, and measures of change and expectation
management. A good deal of stamina, patience, and commitment is indispensable.

2.5 Costs

Quality control and management of preclinical animal research is a topic of increas-
ing importance since low reproducibility rates (Begley and Ellis 2012) have put the
knowledge generated by basic research in question. Furthermore, low reproducibil-
ity rates have caused immense delays and increased costs of therapeutic drug
development (Freedman et al. 2015). NOT implementing recommended solutions
like rigorous study designs, statistics consultation, randomization and blinding of
samples to reduce bias, sharing data, or transparent reporting (Kilkenny et al. 2010;
Landis et al. 2012; Freedman et al. 2015, 2017) in preclinical research will keep
these costs high. Practical implementation of these standards could be supported by a
well-developed QMS and provide structure and ensure achievement.

However, there are many concerns about the financial expenses needed for
implementing quality in research practice by establishing and maintaining a QMS.
Initial minimum financial costs include gaining knowledge about the chosen stan-
dard, in our case through trainings by an external consultant on ISO 9001-based
quality management and documentation organized for the whole staff. Designation
of at least one person who coordinates the implementation of the QMS is essential,
which brings about the issue of salary costs. We hired a quality manager for 2 years
(1 FTE) and in parallel trained a project manager from our team to the standard and
for becoming an auditor to take over after the first certification (0.5 FTE).

In addition, the costs for the certification body needs to be included in cost
calculations. Different certification bodies perform the ISO 9001 certification with
varying costs. The first 3-year period comprises audit fees for the initial certification
and two annual surveillance audits. This is followed by a recertification in the fourth
year. As an example, our certification body costs were as follows: ~6,500€ for the
initial certification, ~3,000€ for an annual surveillance audit, and ~5,000€ for the
recertification.

Since we implemented new IT solutions, we had additional financial costs. For
transparent documentation management, we acquired licenses for a supporting
commercial wiki software (~2,200€ per year). All other software acquirements
were not directly in the context of the ISO implementation and were solely data
analysis or software development related. The same is true for a permanent statisti-
cian position (1 FTE) to support study design and data analysis.

Costs for implementing quality management in research practice are often a
deterrent as the advantages of saving this money might be more obvious than the
disadvantages. However, “not investing in costs” with respect to quality lead to
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“silent” costs. An example is the nonconformity management: if errors and
corresponding measures are not properly documented, reduction as well as detection
and avoidance of recurring errors through a detailed analysis is hardly possible, and
the positive effects of increased efficiency and reduced failure costs are left out. The
financial gain of an effective QMS can hardly be calculated in a research environ-
ment; however, documented, reviewed, and continuously improved processes
ensure identification of inefficiencies, an optimized resource management, avoid-
ance of duplication of work, and improved management information reducing the
general operating costs.

2.6 Payoffs/Benefits

Why should an institution decide to improve quality in research practice by investing
in an ISO 9001 QMS? We want to list a number of fundamental arguments and
provide practical examples that might open a different perspective.

Building a QMS in the GMC demanded the highest efforts in the first 2 years
before the certification (in 2014). However, with increasing maturation of the QMS,
the process ran more efficiently due to enhanced quality awareness and a general
cultural change which both led to increased quality of output (assured by monitoring
the KPIs). People started to like the environment of having a QMS, and continual
improvement became a habit. Over time, the benefits associated with using a QMS
will offset the efforts it took to build it in the first place. Some of the most striking
benefits of having an expanded QMS are listed hereafter.

Management Reviews These are important controlling steps as they give an annual
overview of the actual state of the processes including all KPIs, the content of errors
and the corresponding actions, open decisions that were supposed to be closed
during the year, or specific actions that are pending. To this end, this kind of review
differs from the usual reporting to funding authorities. They solely serve the quality
status and reinforce focus on strategic, quality-related goals that have been identified
as priorities. This is particularly useful since concentrating on important issues (e.g.,
increased QC issues in specific tests or applying a risk-based approach) is something
that is often postponed in favor of other tasks requiring frequent or immediate
attention. Here you need to deal with formal numbers and can react and adapt
milestones if specific problems have not been addressed adequately. Surprisingly,
this kind of review enabled us to react quickly to new developments. Since the
digital assembly of the KPIs is in place, the numbers can be easily reported also
during the year, and fact-based decisions can be made. To this end, contrary to the
belief that a QMS causes a bureaucratic burden, the QMS actually facilitates agile
project management.
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Audit System Internal audits are an often underestimated element of a QMS.
By performing internal audits (e.g., independent phenotyping protocol reviews,
complex process audits, or audits addressing current quality problems such as
reduction of bias), we ensure that standardization is guaranteed, measures for
improvement are defined, and prevention of undesired effects is addressed. Internal
system audits as well as the third-party audits ensure the integrity and effectiveness
of the QMS.

Box 1 First Third-Party Audit
BEFORE: Being part of a third-party audit was initially mentally and emo-
tionally demanding: just before the first certification audit, personnel (afraid of
the visit by the audit team) kept calling to report minor issues and ask what
to do.

AFTER: Now, members of the group are used to internal scientific method
auditing and have realized that we do not run the QMS solely for the certifica-
tion body but for our own benefit. Today, while presenting the systemic
phenotyping methods in a third-party audit, people feel accomplished, enthu-
siastic, and self-confident.

Training Concept Comprehensive training of personnel is time-consuming and
associated with extensive documentation. However, training ensures establishment
and maintenance of knowledge. New employees complete an intensive induction
training including the rules of good scientific practice (GSP), 3 Rs, awareness for
working in an animal research environment, QM issues, and legal regulations.
Regular QM trainings build and maintain awareness of quality issues. The “not
documented, not done” principle is well accepted now and supports the transparency
of personnel competence assessment. In addition, we are currently building an
eLearning training program in order to save time for logistics in case people missed
trainings.

Traceability All processes were critically assessed for traceability. On the physical
level, temporal and spatial tracking of mice and samples (blood, tissue) is an issue.
We implemented a barcoding in our LIMS to register all samples. On the data level,
we aim to maintain full traceability of data and metadata. This means we link file-
based raw data to our LIMS and capture all metadata that may influence actual data,
e.g., experimenter, equipment, timestamp, and device settings. On the process level,
all transitions between sub-processes (“waiting,” “done,” “cancelled”) are logged.
This enables us to monitor dozens of ongoing projects at any time with custom-built
tools to identify and manage impediments.
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Box 2 Traceability Versus Personalized Data Storage
BEFORE: Some 10 years ago, we had to ask a collaboration partner for a
re-genotyping because of identity problems within a cohort of mice. Tail
biopsies were sent, but the electronic list correlating the biopsy numbers to
the corresponding mouse IDs was saved on a personal device unavailable for
the team. Therefore, the results could not be matched and the data analysis was
delayed for more than 4 weeks.

AFTER: Samples now carry a barcode label with the mouse ID and any
lists are saved in a central project folder.

Reproducibility With respect to quality, reproducibility of results is of paramount
importance. In addition to SOPs, which regulate how phenotyping procedures are
physically carried out, we put considerable efforts in making data analysis and
visualization reproducible. To this end, we seamlessly integrated R (R Core Team
2013), a free statistical computing environment and programming language with our
LIMS MausDB. Upon user request in MausDB, R scripts perform customized, test-
specific statistical analyses as well as data visualizations. This tool restricts user
interaction to the mere selection of a data set and the respective R script ensuring that
same data will always reproduce the same statistical results and the same plots.

Box 3 Taking Responsibility in Writing Up Publications
BEFORE: We always provided our collaboration partners with the raw data so
that they could perform additional analyses. In the past, during drafting
manuscripts, we did not verify in detail if we were able to reproduce their
statistical analysis and figures.

AFTER: With the implementation of the QMS, we have formalized how a
manuscript is processed. This process now includes a step in which our
in-house statistician reproduces all analyses and figures using our data as
well as additional data from the collaboration partner.

2.7 Lessons Learned/Outlook

Certification to ISO 9001 is not a requirement in nonregulated preclinical biomedical
research and also does not define scientific standards, but it represents a reasonable
strategy to improve data quality.

GMC’s QMS: A Success Story? Our ISO 9001:2015-based QMS helps us to
generate and maintain transparent and traceable data records within a broad spectrum
of standardized phenotyping processes with low variability and increases collabora-
tion partner’s trust in the analysis, interpretation, and reporting of research data. This
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structured approach also supports compliance with manifold regulations and
promotes awareness and risk-based thinking for the institutional context as well as
meeting the requirements of funders, personnel, the scientific community, and the
public. However, to specifically address the quality of data output, we see the need to
broaden the perspective and to reach out to other parties who perform quality
assessments in preclinical research.

Networking Although certification is rarely found in preclinical research,
participating in a network of institutions in similar scientific research areas
performing, e.g., annual internal ISO 9001 audits on a mutual basis is an opportunity
to address common scientific quality problems and therefore a future goal. Positive
examples are the Austrian biobanks (BBMRI.at) and a French network of techno-
logical research platforms (IQuaRe; https://www.ibisa.net) having built ISO 9001
cross-audit programs.

Limits of Automation We have learned that beyond a certain level of complexity,
further automation requires increasingly and disproportionately higher efforts and is
therefore limited. At the GMC, automation of data analysis and visualization works
well for projects adhering to our standardized workflow. Beyond that, customization
of projects adds additional complexity that is not compatible with full automation. In
such projects, custom data analysis still has to be performed manually.

Innovation At the GMC, information technology has supported operative pro-
cesses since 2001. In that sense, “digitalization” is not just a buzzword for us, but
a continuous process that aims for measurable and sustainable improvement of our
work. IT solutions implemented so far mainly cover standardized processes.

“Machine learning” is another heavily used catch phrase. In the case of the
auditory brainstem response test, we currently use our vast data set to develop
methods for automated detection of auditory thresholds, including deep learning
by neural networks. We are sure that this will provide a more reproducible method,
independent from human influences. Of course, human experts will always review
and QC the results. Nevertheless, setting the scene with a QMS paves the way for
future investment in modern IT technologies and digitalization.
Finally, we made the experience that you need to allow flexibility and consider not
including all processes and/or details in the ISO 9001 QMS. Indeed, the ISO 9001
QMS does not require to incorporate every process, and this might be also a
misconception of many principal investigators (PIs) that prevents the introduction
in academic settings. Real innovation is a truly inefficient and non-directed process
(Tenner 2018) that needs to reside in a protected area. As soon as innovative research
projects generate either new technologies or techniques, we slowly implement these
into our processes and apply quality management measures step by step. Therefore,
it is also important to not allow the system to “take over,” getting lost in microman-
agement or obsessed by automation with new IT solutions. It is all about balancing
the needs for quality and scientific freedom and keeping the expectations from all
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involved parties in a reasonable frame. To this end, it is necessary to allow time
during the implementation process and to understand that benefits are apparent only
after a longer time period.

Although efforts for implementing a QMS might be more tricky in an academic
setting in a university (many PIs, high diversity of activities, rapid change of
personnel) than in a mouse clinic performing highly standardized tests and
procedures, the ISO 9001 standard gives a framework for introducing more
quality-relevant aspects in preclinical research and helps enormously with team
mindset. An ISO 9001-based QMS supports quality in manifold key process types
as well as in supporting, analysis, and improvement processes like training, commu-
nication, documentation, auditing, and error management.

Nevertheless, the determination of good quality data output can only be judged by
scientific peers and the respective community.

3 University of Kentucky Good Research Practice (GRP)
Resource Center

The Good Research Practice (GRP) Resource Center at the University of Kentucky
(UK) is a research support unit under the office of the UK Vice-President for
Research. In the context of experimental life sciences, it is particularly important
to note that UK is also an academic healthcare center. The UK Albert B. Chandler
Medical Center is located in the health sciences campus and is comprised of six
colleges of biomedical sciences (dentistry, health sciences, medicine, nursing, phar-
macy, and public health) as well as the clinical facilities associated with UK
HealthCare. These include the UK Chandler Hospital, Kentucky Children’s Hospi-
tal, UK Good Samaritan Hospital, Markey Cancer Center, Gill Heart Institute,
Kentucky Neuroscience Institute, and Kentucky Clinic, which collectively support
research, education, and healthcare. The Chandler Medical Center is 1 of only
22 academic medical centers in the United States that house 3 nationally recognized
federally funded centers: a National Cancer Institute-designated cancer center, an
Alzheimer’s Disease Center funded by the National Institute on Aging, and the
Kentucky Center for Clinical and Translational Science funded as part of the NIH’s
Clinical and Translational Science Award Consortium.

UK is a public, land grant university established in 1865 located on a 784 acre
urban campus in Lexington, Kentucky. Sixteen colleges and diverse professional
schools are available including Colleges of Agriculture, Dentistry, Health Sciences,
Medicine, Pharmacy, and Public Health, to name a few. Major graduate research
centers offering high-quality multidisciplinary graduate training include the Gradu-
ate Centers for Nutritional Sciences and Gerontology. UK researchers have devel-
oped highly productive collaborations across diverse disciplines, in
multidisciplinary and interdisciplinary research. Research and academic activities
at UK span all 16 colleges, 76 multidisciplinary research centers, and 31 core
research facilities. UK has over 80 national rankings for academic and research
excellence and is 1 of 108 private and public universities in the country to be
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classified as a research university with very high research activity by the Carnegie
Foundation for the Advancement of Teaching.

3.1 Our Mission

The mission of the GRP Resource Center is to assist academic scientists by
providing tools to support research processes that promote data quality, integrity,
and reproducibility. Our center is comprised of faculty and staff with combined
experience as researchers as well as regulatory experience. Our experience includes
conducting both (1) research in full compliance with US FDA Good Laboratory
Practices (GLP), involving defined roles as management, study directors, and quality
assurance (QA), and (2) non-GLP research, which is not required to be conducted
according to GLP regulations but is carried out using many of the requirements
outlined (e.g., maintaining written methods and record of method changes, rigorous
data documentation and traceability, etc.), however typically without QA oversight.
Using experience and training with laboratory and quality management requirements
set forth by the GLP regulations, our center supports laboratories seeking either
mandated requirements (i.e., GLP-compliant research) or those voluntarily seeking
to strengthen current practice to conduct nonregulated research. With recent align-
ment of stakeholder interest in enhancing the value of preclinical research, discussed
further below, we support researchers in meeting these expectations as well. This is
achieved through individual consultation, group training, and other resource sharing
to provide templates for building a practical and effective quality management
system.

3.2 Our Stakeholder’s Interests and Concerns

Most visibly, primary stakeholders in research include those with direct economic
investment, which may take forms of both private and government funding
mechanisms. In many governmental structures, investment can be extended to the
general public. The public may contribute both direct financial investment in funding
research and, more indirectly, the economic burden of supporting healthcare
measures that support unfavorable health outcomes where effective therapies are
delayed or do not exist. Additionally, many individuals also have a personal
investment with hope for a better understanding of diseases and development of
therapies for illnesses that may affect them personally or family members. Other
stakeholders include publication agencies, which rely on transparent and accurate
reporting of research processes and results as well as a thorough discussion of
possible limitations of findings when interpreting significance of results.

Public opinion of scientific research has declined due to increasing evidence for
lack of reproducibility (Begley and Ioannidis 2015; Pusztai et al. 2013). Studies
conducted by Bayer included review of new drug targets in published results and
found that 65% of in-house experimental data did not match published results
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(Mullard 2011). Similarly, a 10-year retrospective analysis of landmark preclinical
studies indicates that the percentage of irreproducible scientific findings may reach
as high as 89% (Begley and Ellis 2012). In addition, studies indicate a recent surge in
publication retractions. Approximately 30 retraction notices appeared annually in the
early 2000s, while in 2011 the web of science indexed over 400 retractions (a 13-fold
increase), despite total number of papers published rising by only 44% (Van
Noorden 2011).

Although stories of scientific misconduct, particularly fraud, are often the most
memorable and garner the most attention, studies support that other experimental
factors related to irreproducibility are bigger contributors to the problem (Gunn
2014; Freedman et al. 2015; Collins and Tabak 2014; Nath et al. 2006). Key
contributors to irreproducibility include biological reagents/reference materials,
study design, analysis, reporting, researcher and/or publishing bias, and institutional
incentives and career pressures that compromise quality (Freedman et al. 2015;
Begley and Ellis 2012; Begley et al. 2015; Ioannidis 2005; Baker 2016a, b; Ioannidis
et al. 2007). These factors engage the scientific community at multiple levels,
highlighting a need for a cultural shift and prioritization on quality, which includes
the primary scientist, but also call into action funding agencies/institutes, publishers,
and institutional policy makers who each have responsibilities in directing the
research process and setting benchmarks for success. In the United States, a major
stakeholder in research quality, the National Institutes of Health (NIH), has
recognized the combination and interaction of factors that contribute to irreproduc-
ibility in preclinical research and acknowledged that there is a community responsi-
bility to the reproducibility mission. Several NIH institutes and centers are testing
measures to better train researchers and better evaluate grant applications to enhance
data reproducibility (Begley and Ellis 2012; Collins and Tabak 2014), and major
publishers have committed to taking steps to increase the transparency of published
results (McNutt 2014; Announcement 2013).

3.3 How to Address Data Irreproducibility

With the abovementioned contributors to irreproducibility in mind, several research
processes may be isolated that would benefit from implementing a quality manage-
ment system. At the forefront are standardized and comprehensive documentation
procedures that allow adequate study reconstructability. In research environments
with frequent personnel turnover, which is particularly the case in academic settings,
accessing traceable records is a cornerstone to further isolation of specific sources of
irreproducibility as well as accurate and transparent reporting of experimental
methods and results. For example, documentation of the key reagent batch/lot
information may be critical in troubleshooting discrepancies in bioanalytical results.
A secure, indexed archiving system that protects the integrity of materials is also
necessary to facilitate expedient access to study materials over time. Standardization
of experimental design elements is also needed with agreement among and within
laboratories for critical aspects, which include, but are not limited to, key chemical/
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biological resources, personnel training, equipment testing, statistical methods, and
reporting standards (Nath et al. 2006; Kilkenny et al. 2010; Landis et al. 2012).
Standardization and best practice guidelines for particular technologies and fields of
study are continuing to be developed, debated, and refined (Taussig et al. 2018;
Almeida et al. 2016); however, preclinical research would also benefit from reaching
an agreement on quality management expectations common to many research
applications.

3.4 Why Build a GLP-Compliant Quality Management System
in Academia

Our decision to become GLP-compliant resulted from requests from industry
partners who were seeking continuity through early discovery work to
GLP-compliant safety studies. This circumstance arose out of a combination of
experience and capabilities unique to our team with magnetic resonance imaging-
targeted intracranial drug delivery in large animal models.

The GLP regulations describe the minimum requirements for conducting non-
clinical studies that support or are intended to support research or marketing permits
for products regulated by the FDA and Environmental Protection Agency (Pesticide
Programs: Good Laboratory Practice Standards 1983; Nonclinical Laboratory Stud-
ies: Good Laboratory Practice Regulations 1978). The GLP regulations were
formalized as laws in 1978 following evidence for fraudulent and careless research
at major toxicology laboratories, namely, Industrial Bio-Test Laboratories and
Searle. In one example of a study that was executed poorly, validation of methods
used to generate test article mixtures had not been carried out, leading to nonhomo-
geneous mixtures and resulting in uncontrolled dosing. In other cases, study records
were poorly maintained and reports appeared falsified: animals that were
documented as deceased were later reported alive in study reports. Investigations
culminated in the conclusion that toxicology data could not be considered valid for
critical decision-making by the agency, putting public health at a tremendous risk
(Baldeshwiler 2003; Bressler 1977).

With the intent to assure the quality, integrity, and reproducibility of data, GLP
regulations direct conditions under which studies are initiated, planned, performed,
monitored, and reported. To name select general examples, meeting GLP regulatory
requirements involves:

• Characterization of key reagents (e.g., test/control articles)
• Traceable, accurate, and archived study records
• Established personnel organization
• Training of all personnel
• A written study protocol and other written methods for facility processes with

record of any changes

414 O. Meagan Littrell et al.



• An independent monitoring entity, quality assurance unit (QAU), which performs
inspections and audits to assure facility and regulatory requirements were met and
reports accurately reflect the raw data

These elements, although not all-inclusive, are key components that address the
quality management needs discussed above. Since achieving data quality is also a
priority in nonregulated research, as it is a basis for drug development, adapting GLP
elements and applying those as voluntary quality practices is one option to meet
quality needs. At the University of Kentucky, the GRP Resource Center has taken a
lead role in developing a model to guide individual researchers and facility directors
who are seeking to strengthen current practices but are not conducting studies where
GLP compliance is required. Our focus to date has involved initial and ongoing
assessment of centralized, shared use research core facilities and instruction of
research trainees. Our quality consultation services are also available by researcher
request for both voluntary quality management consultation and GLP needs assess-
ment, as facility needs dictate. Select GLP elements are listed as applicable to
nonregulated preclinical laboratory research and achieving quality (see Table 1).

3.5 Challenges

Our discussion will focus on GLP suitability and limitations for quality achievement
needs and implementation in preclinical research. Implementing an effective QMS,
particularly those outlined in GLP regulations, is met with specific needs such that
increased resource allocation should be expected including time, personnel, and
associated fiscal investment. For example, few preclinical laboratories have the
resources necessary to characterize test/control articles to GLP standards. Addition-
ally, GLP compliance presents a greater challenge in the university setting where
nonregulated operational units may interact with the GLP infrastructure. Also,
complex administrative relationships may result in difficulty defining GLP organi-
zational structure. Furthermore, personnel concerns include high turnover, inherent
to the training environment of academia, as well as obtaining support for indepen-
dent personnel to carry out QA functions, particularly where GLP studies may not be
performed on a continual basis. However, compliance challenges can be lessened
when executive administrators value quality and can offer support to address these
needs. These unique GLP challenges and options for supporting a GLP program are
discussed further in the literature (Hancock 2002; Adamo et al. 2012, 2014).
Understandably, studies that require GLP compliance do not present substantial
flexibility in quality management components. Nonetheless, using GLP elements
as a template for nonregulated preclinical studies, where GLP is not mandated, is a
viable option and may substantially lower variation and irreproducibility by focusing
on top contributors to bad quality (Freedman et al. 2015). It is important to note that
although these self-imposed standards are non-GLP, they still add value. Thinking in
terms of a quality spectrum rather than all-or-nothing may be a more
productive model for addressing reproducibility issues in a resource-limited setting.
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For example, without support for an independent QAU, a periodic peer-review
process among laboratory staff can be implemented to verify that critical record
keeping, for example, legibility and traceability, is present in study records (Baker
2016b; Adamo et al. 2014).

3.6 Costs

Although definitions and models vary, the cost of quality (CoQ) has been described
as the sum of those costs associated with both failure and achieving the desired
quality (Wood 2007). Treatment of CoQ in the clinical laboratory is helpful as a
template to evaluate the nonclinical laboratory concerning both quality failure and
quality achievement costs (Berte 2012a; Wood 2007; Carlson et al. 2012;
Feigenbaum 1991). Models subdivide quality costs that are relevant to the assess-
ment of research laboratory costs and include prevention, appraisal, internal failure,

Table 1 Total CoQ as represented by cost of failure + cost of achieving

CoQ failure CoQ achieving Reduced total CoQ

• Erroneous results !
tentative decisions
• Inconsistent record
keeping
• Repeating
experiments !
misutilized resources
• Compromised ethics
(use of animals, clinical
specimens, etc.)
• Lack of stakeholder
confidence
• Missed funding
opportunities
(government/industry)
• Therapeutic delay
• Embarrassment

• Investment (time + resources) in
preventing failure:
� Standardizing

documentation, e.g., developing
SOP(s) and appropriate data forms
� Standardizing technical and

administrative procedures, e.g.,
developing SOP for sample
processing, record retention/
archival, etc.
� Training
� Key resource authentication –

e.g., standardized reference material,
characterization of test/control
articles, test systems, etc.
� Facility +process suitability

assessment
� Defining personnel

organizational structure w/ quality
management, e.g., management,
study director, quality assurance
� Instrument/equipment

preventive maintenance
� Record process deviations
� Report standardization

• Investment (time + resources) in
quality appraisal:
� Audits/inspection mechanism
� Equipment testing
� Proficiency assessment
� Review process deviations

• Reliable data !
increased confidence in
decisions
• Transparent records +
accurate and efficient
reporting process
• Greater resources
availability for biological
inquiry + extending findings
• Restored stakeholder
confidence
• Maintain and expand
funding opportunities
• More efficient
therapeutic development
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and external failure. As examples, prevention quality costs include quality
management planning, process validation, training, preventive maintenance, and
process improvement measures, and appraisal costs include those associated with
verification that desired quality is being achieved like periodic proficiency testing,
instrument calibration, quality control, and internal inspections/audits. Both preven-
tion and appraisal costs are part of the cost of achieving quality, while internal and
external costs are associated with failure, occurring either before or after delivery of
a product/service, respectively. For example, obtaining a contaminated sample that
must be collected again is an internal cost, while recalling released results is an
external cost (Berte 2012a).

In calculating quality failure costs in preclinical research, using reproducibility as
an indicator for variation/quality and a modest estimation of 50% irreproducibility
rate, this cost is estimated to exceed 28 billion dollars in the United States annually
(Freedman et al. 2015). Of note, lack of agreement defining reproducibility was
noted in analyses and includes both variation in results and ability to carry out
replication using the available methods, and this also does not imply that irreproduc-
ible studies were of zero value (Freedman et al. 2015; Begley and Ellis 2012;
Mullard 2011; Ioannidis et al. 2009). Additional failure costs are publication
retractions and time/resources consumed investigating confounding results and
repeating experiments, which are resources consequently unavailable for consider-
ation of biological questions and extending findings (Baker 2016b), ultimately
contributing to delayed development of effective therapies (Freedman and Mullane
2017). Cost of quality models may also include “intangible” costs associated with
quality failure such as lost opportunities (Schiffauerova and Thomson 2006). As has
been described, one such cost is the lack of confidence among stakeholders in
biomedical research and conceivably lost opportunities due to unreliable results.
Quality deficiencies may also cause undue damage to workplace morale, for exam-
ple, if deficiencies result in blame placed on personnel when a lack of quality
management processes or ineffective processes are actually at fault (Berte 2012a).
In implementing measures to achieve quality, intangible costs may also be incurred
if quality achievement processes are perceived to result from distrust in personnel
competency.

Estimations from clinical laboratories indicate that approximately 35% of total
operating costs are associated with CoQ, with CoQ failure and achievement account-
ing for 25% and 10% of the total, respectively (Menichino 1992). Although
estimates specific to preclinical research are lacking, in this laboratory example,
the cost of failure exceeds the cost of achieving. This makes investment in processes
that promote quality (prevention, appraisal) particularly valuable since these typi-
cally require less investment than quality failures and, if implemented effectively,
reduce the cost of failure by reducing the total CoQ. Furthermore, costs associated
with maintaining an effective quality management system would likely decrease
over time as corrective and preventive actions are implemented (Berte 2012a, b). We
estimate that the initial implementation costs to meet GLP requirements totaled
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$623,000 USD over a 3-year period. These costs related to achieving quality can be
divided broadly into three categories: (1) internal staff/administrative costs related to
establishing written methods for standardizing laboratory and other facility
operations (52% of the costs); (2) appraisal costs, which includes gap analyses/
external consulting and training of internal QA associates (47% of the costs); and
(3) equipment maintenance and testing (1% of the costs). Of note, these categories
were difficult to strictly partition among appraisal, preventing quality failure, and
equipment. For example, standardizing reagents were used to both prevent failure,
when used for equipment maintenance activities, and appraisal activities, if used to
test equipment. Personnel effort (as accounted for as internal staff/administrative
costs) also crosses categories since effort includes both time spent standardizing
equipment testing criteria (to prevent failure) and time spent evaluating conformance
to those criteria (appraisal). Thus, there may be some flexibility in the estimated
contribution of each category to overall cost.

Although implementation costs were high, these were met with gained
opportunities. Research funding by industry contracts during and after the establish-
ment of our GLP-compliant infrastructure increased 109%, from $3.5 million USD in
total support in the 6 years preceding its existence to $7.3million USD in total support
over the following 6-year period. While difficult to directly quantify, our facility
collaborative opportunities were also broadened through increased industry recogni-
tion due to having experience using a QM framework familiar to the pharmaceutical/
device industry. As would be predicted from other models (Berte 2012a, b), we
experienced a sharp decline in costs after having established our QM framework. For
example, our total annual maintenance cost represents, on average, only about 9% of
the total implementation cost. Maintenance costs were reduced across all three
categories, however most dramatically in costs related to appraisal/external consult-
ing and establishing a QAU, which represents approximately 1% of the initial
appraisal costs. Of note, our initial appraisal costs, which were directed toward full
compliance with GLP regulations, involved identifying and working with specialized
external consultants who have regulatory expertise. In research settings where quality
needs do not engage GLP regulations, other options may be available including
utilizing internal personnel for appraisal activities.

Costs incurred due to quality failures are difficult to quantify or even estimate;
however, the further downstream in the research process quality failures is exposed,
the greater the cost (Campanella 1999). For example, in the case that quality failure
(as represented by variation or irreproducibility in the research results in preclinical
research) is realized after publication, the cost of failure is the highest, requiring
supporting all of the research costs again (Berte 2012a). Potentially, additional
intangible costs are incurred if reported results were used as the scientific premise
for additional research, an area that has been described clearly by NIH (Collins and
Tabak 2014). Therefore, allocating resources to support the costs of attaining quality
early in the research process (prevention and appraisal) is a worthwhile investment
that, overtime, reduces the CoQ by reducing the cost of failure. Resources spent on
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services/reagents to perform preventive maintenance/testing of equipment are
examples of such quality attainment costs. As outlined in Table 1, GLP regulations
describe several requirements that support achieving quality which are included in a
consideration of CoQ (Nonclinical Laboratory Studies: Good Laboratory Practice
Regulations 1978; Berte 2012a).

3.7 Payoffs/Benefits

In short, major benefits to investing in quality in the research laboratory include
recovering resources spent due to variation or reproducibility failures, as discussed
above. Those involve both costs incurred in repeating the research process, in the case
of irreproducibility, and recovering intangible costs: more certainty in extending
research findings based on a solid scientific premise, regaining missed opportunities,
and restoring stakeholder confidence. Prioritizing quality in preclinical research
supports a more transparent research process with greater efficiency in developing
therapies and furthering the understanding of health and disease. As described above,
complying with research standards, like GLP regulations, is costly but may offer a
competitive advantage by facilitating mutually beneficial industry partnerships ear-
lier and more readily. Bridging this gap in translational research is of particular
relevance in the academic healthcare center environment with the unique opportunity
to utilize expertise and innovative technology platforms unique to academia (Stewart
et al. 2016; Hayden 2014; Tuffery 2015; Cuatrecasas 2006) within a framework that
can support continuity with researcher-initiated nonclinical studies through clinical
trials (Adamo et al. 2014; Slusher et al. 2013; Yokley et al. 2017).

3.8 Lessons Learned/Outlook

Applying CoQ models to current estimations of the financial costs associated with
irreproducible research makes a convincing case for reevaluating existing research
practices. Exposure to regulatory guidelines and more general training in quality
management in the academic research environment has been well received as a
supplement to the research trainee curriculum, potentially broadening career
opportunities. Following training workshops, we have received positive feedback,
particularly regarding the benefit to research trainees, and some faculty have
requested further individual consultation in order to identify quality needs and better
implement voluntary quality practices in their laboratories. Researchers have also
showed reluctance to implement a QMS with limited resources that can be allocated
to such efforts. It is not uncommon for senior researchers to initially seek to
implement only the minimum requirements to meet funding agency/journal
expectations; however, we are optimistic that benefits will be realized with time.
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With this objective in mind, in our consultation process, we value incremental
progress in implementing quality management processes and welcome feedback
and customized, researcher-initiated solutions to quality management needs. This is
the approach we have taken in consultation with UK research core facilities as an
ongoing process, which is currently underway.

In our experience, it is clear that higher administrative support is necessary to
guide these collective efforts. Our center received early support from institutional
administration (Dean’s Office, College of Medicine) to supplement initial imple-
mentation costs. Additionally, ongoing administrative support from the Vice-
President of Research has been indispensable in outlining quality indicators,
initiating meaningful cultural change, and supporting the infrastructure necessary
for continued achievement and assessment of quality. We believe our GLP experi-
ence strongly supports recent reproducibility initiatives from major funding agencies
(e.g., NIH) and thus the shared interest of university leadership and researchers
seeking to make meaningful contributions to the existing body of knowledge
through their research efforts.

4 Conclusions: Investing in Quality

In this chapter, we have described our experience with the implementation of a QMS
in research practice, using ISO 9001 and GLP as examples, and how the numerous
benefits outweigh initial efforts. Existing concerns and evidence for quality collapse
necessitate collaborative measures to improve the value of preclinical research. The
costs associated with quality failures are considerable and often compound in the
research process, leading to repeatedly encumbering research costs and/or distribu-
tion of misinformation and experiments based on unreliable results. However,
investment in an effective QMS provides considerable benefits and return of costs
multifold – recovering failure costs and expanding opportunities for the scientific
community (see Table 2). In summary, although complete agreement and rapid
adoption of quality standards in the scientific community seem hard to achieve,
using general quality principles and processes that are available is not only a viable
option but rather the cornerstone in promoting quality and reproducibility, effec-
tively reducing the cost of quality.

Table 2 Major benefits of implementing quality management

• Higher efficiency, reproducibility, and quality
• Basis for new IT solutions and agile project management
• Easier communication, exchange, and comparability with other laboratories, platforms, and
infrastructures with similar focus
• Openness, involvement, and transparency in the team (trust building)
• Investment in the future of high-quality expectations in a global digitalized environment
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